K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

a ) Để A chia hết cho 2 ; x là số chẵn

  Để A không chia hết cho 2 ; x là số lẻ

b ) Để A chia hết cho 4 ; x chia hết cho 4

   Để A khộng chia hết cho 4 thì ngược lại 

c ) Để A không chia hết cho 3 ; x không chia hết cho 3

    Để A chia hét cho 3 ; x phải chia hết cho 3

29 tháng 11 2019

Ta thấy:

10^2019=1000...0(có 2019 cs 0)

Tổng chữ số của số trên là:

1+0+0+0+...+0(2019 chữ số 0)=1

Mà 1 không chia hết cho 3 và 9

Nên 1000..0(có 2019 cs 0) hay 10^2019 không chia hết cho  và 9

102009 = 10000...000 ( 2009 chữ số 0 )

Để 1000...000 chia hết cho 9 thì 1 + 0 + 0 + .... + 0 ( 2009 chữ số 0 ) phải chia hết cho 9

Mà 1 + 0 + 0 + .... + 0 ( 2009 chữ số 0 )  = 1 

=> 102009 không chia hết cho 9

=> 102009 không chia hết cho 3

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

17 tháng 1 2022

Giúp tớ với tớ cần gấp

17 tháng 1 2022

bài 1:

Ta có 2 Chia hết cho 2

=> 2.3.4.5.6.7 chia hết cho 2   (1)

Ta có 4 chia hết cho 2

=> 3.4.5.6.7.8 chia hết cho 2   (2)

Từ (1) và (2) => A chia hết cho 2

bài 2

Ta có : 1995 chia hết cho 3

=> 995.1997 chia hết cho 3      (1)

ta có: 1998 chia hết cho 3

=> 1998.1999 chia hết cho 3    (2)

Từ (1) và (2) => B chia hết cho 3

Bài 3

Ta có: 2^6 chia hết cho 64

=> 2^2021 chia hết cho 64

=>  2^2021.2^2022.2^2023.2^2024 chia hết cho 3

=> C chia hết cho 3

 

16 tháng 12 2015

a. Ta có: 

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^9.3\)

\(=3.\left(2+2^3+...+2^9\right)\)chia hết cho 3

=> A chia hết cho 3 (đpcm).

b. Ta có:

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31\)

\(=31.\left(2+2^6\right)\)chia hết cho 31

=> A chia hết cho 31 (đpcm).

17 tháng 8 2019

nếu x chia 3 dư 1 hoặc dư 2 ,y chia 3 dư 1 hoặc dư => \(x^2\)chia 3 dư 1, ychia 3 dư 1=> x2+y2 chia 3 dư 2=> không thỏa mãn

nếu x chia hết cho 3, y chia hết cho 3=> x2chia hết cho 3, y2chia hết cho 3=>x2+y2 chia hết cho 3 

=> x2+y2 chia hết cho 3 <=> x chia hết cho 3, y chia hết cho 3=> đpcm

17 tháng 8 2019

hazzzzzzz

4 tháng 8 2015

1, 

a, Ta có: A = 2 + 22 + 23 +.......+ 210

= ( 2 + 22 ) + ( 23 + 24 ) +...... + ( 29 + 210 )

= 6 + 23 . ( 2 + 22 ) +... + 29 . ( 2 + 22 )

= 6 + 23 . 6 + ......... + 29 . 6

= 6 . ( 2 + 22 + 23 +......+ 29 ) chia hết cho 3 ( Vì 6 chia hết cho 3, nên 6k chia hết cho 3 )

=>   A chia hết  cho 3

b, Tương tự ta làm tiếp với ý b