K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

\(3,14:0,4=21x:1,68\)

\(\Rightarrow21x=\dfrac{3,14.1,68}{0,4}=13,188\)

\(\Rightarrow x=0,628\)

Vậy....................

1 tháng 9 2023

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)

\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)

b) \(2n+7⋮n+1\left(n\inℤ\right)\)

\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)

c) \(xy+x-y=6\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y+1\right)-y-1+1=6\)

\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

20 tháng 7 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{6z}{36}\)

áp dụng t\c của dãy tỉ số = nhau ta có :

\(\frac{x}{2}=\frac{3y}{9}=\frac{6z}{36}=\frac{x+3y+6z}{2+9+36}=\frac{82}{47}\)

đến đây s s í :v

20 tháng 7 2018

x/2=y/3=z/6=3y/9=6z/36

áp dụng t/c dãy tỉ số bằng nhau ta có:

x/2=y/3=z/6=3y/9=6z/36=x+3y+6z/2+9+36=82/47

=> x=.....

y=.....

z=......

sau đó bnj cọng lại 

1 tháng 4 2016

x+y+xy=9

x(y+1)+y+1=10

(x+1)(y+1)=10

x+1,y+1 thuộc Ư(10)

1 tháng 4 2016

k di rui mik tra loi cho

5 tháng 4 2023

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài