Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=45k+20\left(k\in N\right)\)
\(a=45k+20=5\left(9k+4\right)⋮5\)
\(a=45k+20\); \(45k⋮15\) nhưng \(20\) không chia hết cho \(15\)
Vậy \(45\) dư \(20\) chia hết cho \(5\) nhưng không chia hết cho \(15\)
Ta đặt số tự nhiên có dạng 45k+20 (k\(\inℕ\))
Ta có
+, 45k+20\(⋮5\), do 45 chia hết cho 5, 20 cũng chia hết cho 5
=>45k+20 chia hết cho 5
+,45k+20\(⋮̸5\), do 20 không chia hết cho 15
=>45k+20 không chia hết cho 15
Vậy 45k+20 chia hết cho 5.
\(A:45R15\\ \Rightarrow A⋮\left(45-15\right)=30\\ \Rightarrow A⋮5;A⋮3;A⋮̸9\)
Đặt \(a=45k+15\left(k\in N\right)\)
\(\left\{{}\begin{matrix}a=45k+15=5\left(9k+3\right)⋮5\\a=45k+15=3\left(15k+5\right)⋮3\\a=45k+15=9\left(5k+1\right)+6⋮̸9\end{matrix}\right.\)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Số tự nhiên b chia cho 45 dư 15 nên b = 45k+15 (k ∈ N)
Vì 45k chia hết cho 3, cho 5 và cho 9, còn 15 chia hết cho 3, cho 5 nhưng không chia kết cho 9 nên b chia hết cho 3, cho 5 và b không chia hết cho 9
Gọi thương là b
=> a : 20 = b ( dư 15 )
=> a = 20b + 15
+) Xét thấy : 20b chia hết cho 2 nhưng 15 ko chia hết cho 2
=> a = 20b + 15 ko chia hết cho 2
+) Xét thấy 20b và 15 đều chia hết cho 5
=> a = 20b + 15 chia hết cho 5
Vậy a chia hết cho 5 nhưng ko chia hết cho 2
chứng minh rằng :tổng bốn số tự nhiên liên tiếp đều chia hết cho 4
Số tự nhiên này có dạng 45k+20 (k thuộc N)
Ta có: 45k + 20 chia hết cho 5 => Số này chia hết cho 5
45k+20 chia cho 15 dư 5 => Số này không chia hết cho 15.