K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Trần Phương Nhi câu nào cũng: tick đi mình làm cho

2 tháng 4 2016

2011 du 4 va 6

1 tháng 12 2021

vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1

29 tháng 11 2015

cho1 tick rồi mình giải chi tiết cho, ha

9 tháng 7 2018

Số chính phương khác 2 và 3 có dạng:\(6k+1,6k+5\)(k\(\in\)N*)

Nếu số đó có dạng \(6k+1\) thì \(\left(6k+1\right)^2=\left(6k\right)^2+2.6k.1+1=36k^2+12k+1\) chia 12 dư 1

Nếu số đó có dạng \(6k+5\) thì \(\left(6k+5\right)^2=\left(6k\right)^2+2.6k.5+5^2=36k^2+60k+25\) chia 12 dư 1

Vậy ta có điều phải chứng minh