K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Làm tương tự với 3 cái sau và cộng lại ta sẽ có BĐT bên trái

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Làm tương tự với 3 cái sau và cộng lại ta sẽ có BĐT bên phải

2/\(H=\left(x^2+y^2+1-2x+2y-2xy\right)+\left(x^2+2x+1\right)+2019\)

\(H=\left(x-y-1\right)^2+\left(x+1\right)^2+2019\ge2019\)

\(H_{min}=2019\) khi \(\left\{{}\begin{matrix}x+1=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

10 tháng 1 2020

Đặt \(\hept{\begin{cases}b+c+d=x>0\\a+c+d=y>0\\a+b+d=z>0\end{cases}}\)và \(a+b+c=t>0\)

\(\Rightarrow\hept{\begin{cases}a=\frac{y+z+t-2x}{3}\\b=\frac{x+z+t-2y}{3}\\c=\frac{x+y+t-2z}{3}\end{cases}}\)và \(d=\frac{x+y+z-2t}{3}\)

Từ đó ta có:\(Q=\frac{y+z+t-2x}{3x}+\frac{x+z+t-2y}{3y}+\frac{x+y+t-2z}{3z}+\frac{x+y+z-2t}{3t}\)

\(=\frac{y}{3x}+\frac{z}{3x}+\frac{t}{3x}-\frac{2}{3}+\frac{x}{3y}+\frac{z}{3y}+\frac{t}{3y}-\frac{2}{3}+\frac{x}{3z}+\frac{y}{3z}+\frac{t}{3z}-\frac{2}{3}+\frac{x}{3t}+\frac{y}{3t}+\frac{z}{3t}-\frac{2}{3}\)

\(=\left(\frac{y}{3x}+\frac{x}{3y}\right)+\left(\frac{z}{3x}+\frac{x}{3z}\right)+\left(\frac{t}{3x}+\frac{x}{3t}\right)+\left(\frac{z}{3y}+\frac{y}{3z}\right)+\left(\frac{t}{3y}+\frac{y}{3t}\right)+\left(\frac{t}{3z}+\frac{z}{3t}\right)-\frac{8}{3}\)

Áp dụng BĐT AM-GM ta được:

\(\frac{y}{3x}+\frac{x}{3y}\ge2\sqrt{\frac{y}{3x}.\frac{x}{3y}}=\frac{2}{3}\)

CMTT \(\Rightarrow Q\ge\frac{4}{3}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c=d\)

24 tháng 3 2020

Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)

Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)

Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)

\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)

Cộng vế với vế (3);(4);(5);(6) ta có:

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)

TL
24 tháng 3 2020

Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d

A > a+b+c+d/a+b+c+d = 1 (1)

Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:

A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2

Từ (1) và (2) => đpcm

nguồn:soyeon_Tiểubàng giải

30 tháng 3 2016

Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0

11 tháng 8 2019

Có: \(\frac{a}{b+c+d}+\frac{b+c+d}{a}=\frac{a}{b+c+d}+\frac{b+c+d}{9a}+\frac{8\left(b+c+d\right)}{9a}\)

\(\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{9a}}+\frac{8\left(b+c+d\right)}{9a}\)

\(=\frac{2}{3}+\frac{8\left(b+c+d\right)}{9a}\)

Tương tự ba BĐT còn lại và cộng theo vế thu được:

\(\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)=\frac{8}{3}+\frac{8}{9}\left(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+c}{c}+\frac{a+b+c}{d}\right)\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{\left(b+c+d\right)\left(c+d+a\right)\left(d+a+c\right)\left(a+b+c\right)}{abcd}}\)

\(\ge\frac{8}{3}+\frac{32}{9}\sqrt[4]{\frac{3^4.abcd}{abcd}}=\frac{40}{3}\)

Đẳng thức xảy ra khi a = b =c = d

P/s: Tính sai chỗ nào tự sửa nhá, dạo này hay nhầm lắm!

15 tháng 2 2020

2/ \(=\left(x^2-2xy+y^2+4x-4y+4\right)+\left(y^2+2y+1\right)+2016\)

\(=\left(x-y+2\right)^2+\left(y+1\right)^2+2016\ge2016\)

Vậy Min A =2016 khi\(\left\{{}\begin{matrix}x-y=-2\\y=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

5 tháng 4 2020

Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)

Tương tự: với b,c rồi cộng vế theo vế có ĐPCM

DD
31 tháng 5 2021

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\).

\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)

\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)

Suy ra đpcm.