Tam giác ABC có AB = AC = 3cm, BC =2cm, đường phân giác BD. Đường vuông góc với BD tại B cắt AC tại E. Tính độ dài CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
\(\frac{\text{AE}}{\text{AB}}=\frac{\text{EC}}{\text{BC}}\)
\(\Leftrightarrow\text{CE= }\frac{\text{AE∗BC}}{\text{AB}}\)
\(\Leftrightarrow\text{CE=}\frac{\text{AE∗2}}{3}\)
\(\Leftrightarrow\)3CE= ( CE+AC)*2\(\Leftrightarrow\)3CE= 2CE +2AC
\(\Leftrightarrow\)CE= 2AC=6cm :| :| :-SS :-SS
Tự vẽ hình nhé trả lời hóng giao thừa thôi :))
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
\(\frac{AE}{AB}=\frac{EC}{BC}\)\(\Rightarrow\)\(CE=\frac{AC.BC}{AB}\)
\(\Rightarrow\)\(CE=\frac{AE.2}{3}\)
\(\Rightarrow\)\(3CE=\left(CE+AC\right).2\)
\(\Rightarrow\)\(3CE=2CE+2AC\)
\(\Rightarrow\)\(CE=2.AC=6\left(cm\right)\)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b:
Sửa đề: AN=2cm
MN//BC
=>MN/BC=AN/AC
=>MN/10=2/8=1/4
=>MN=2,5cm
c AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm; DC=40/7cm
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC