cho tam giác ABC vuông cân tại C. Từ C kẻ một tia vuông góc với đường trung tuyến AM cắt AB ở D. Kẻ CH vuông góc với AB(H thuộc AB) CH cắt AM tại G
a, CMR : GD//CB
b, tính tỉ số BD/DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính tỷ lệ DABD trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.
Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:
△ABD∼△AMC
Bằng cách này, chúng ta có:
DA/BD=AC/MC
Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.
Vậy nên:
DA/BD=2/1
Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH
a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có
MB=MC
\(\widehat{EBM}=\widehat{FCM}\)
Do đó: ΔMEB=ΔMFC
Suy ra:ME=MF và EB=FC
Ta có: AE+EB=AB
AF+FC=AC
mà AB=AC
và EB=FC
nên AE=AF
Ta có: AE=AF
nên A nằm trên đường trung trực của FE(1)
Ta có: ME=MF
nên M nằm trên đường trung trực của FE(2)
từ (1) và (2) suy ra AM là đường trung trực của FE
hay AM\(\perp\)FE
Để tính tỷ lệ DABD trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.
Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:
△ABD∼△AMC
Bằng cách này, chúng ta có:
DA/BD=AC/MC
Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.
Vậy nên:
DA/BD=2/1
Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.