K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để tính tỷ lệ DABD​ trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.

Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:

△ABD∼△AMC

Bằng cách này, chúng ta có:

DA/BD​=AC/MC​

Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.

Vậy nên:

DA/BD​=2/1​

Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.

oaoa

Để tính tỷ lệ DABD​ trong tam giác vuông cân ABC, chúng ta cần sử dụng định lí đồng dạng tam giác.

Gọi E là trung điểm của BC, M là trung điểm của AC. Theo định lí đồng dạng tam giác, ta có:

△ABD∼△AMC

Bằng cách này, chúng ta có:

DA/BD​=AC/MC​

Nhưng MC là trung tuyến của tam giác ABC, vì vậy MC bằng một nửa độ dài AB.

Vậy nên:

DA/BD​=2/1​

Do đó, BD chiếm một nửa độ dài của DA trong tam giác ABC vuông cân ở C.

a: ΔABC vuông tại A
mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)

\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)

mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)

nên \(\widehat{DAB}=\widehat{HAB}\)

=>AB là phân giác của góc DAH

 

24 tháng 7 2018

Mình vẽ hình trước:

A B C P M Q K D

a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có 

MB=MC

\(\widehat{EBM}=\widehat{FCM}\)

Do đó: ΔMEB=ΔMFC

Suy ra:ME=MF và EB=FC

Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC

và EB=FC

nên AE=AF

Ta có: AE=AF

nên A nằm trên đường trung trực của FE(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của FE(2)

từ (1) và (2) suy ra AM là đường trung trực của FE

hay AM\(\perp\)FE