Số tự nhiên n có 54 ước. Chứng minh rằng tích các ước của n bằng n^27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
⇒ ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( có 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Kết luận → Các ước của số tự nhiên n bằng n27
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )
gọi các ước của n lần lượt là : a1 ; a2 ..... a54 (Tất cả đều khác nhau và thuộc N*)
Ta có :a1 x a54 ; a2 x a53 ;...;a27 x a28
==> a1 x a54 ; a2 x a53 ;...;a27 x a28 = n x n x n x n x ... x n (có 27 số n)
a1 x a54 ; a2 x a53 ;...;a27 x a28 = n27
==> Tất cả các ước của số tự nhiên n đều = n27
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )
mình cũng ko biết làm