B=
\(\frac{1}{^{5^2}}+\frac{1}{5^4}+\frac{1}{5^6}+......+\frac{1}{5^{^{2014}}}\)
chứng minh B<1/24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :
1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra
B= >89 _980 - -50 + 678 x 54=143.098-2014/5.2015
vậy B=78
Chua hoc
Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhe Nguyen Chau Tuan Kiet
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)
\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)
Ta có: \(B=\frac{1}{5^2}+\frac{1}{5^4}+\frac{1}{5^6}+...+\frac{1}{5^{2014}}\)
=> \(25B=1+\frac{1}{5^2}+\frac{1}{5^4}+...+\frac{1}{5^{2012}}\)
=> 25B-B=24B= \(1-\frac{1}{5^{2014}}\)
=> \(B=\frac{1-\frac{1}{5^{2014}}}{24}< \frac{1}{24}\)
=> đpcm