Cho đường tròn (O). Từ điểm A bên ngoài đường tròn vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng kẻ qua C song song với AB cắt đường tròn (O) ở D, AD cắt đường tròn (O) ở M, CM cắt AB ở N. Chứng minh: a) Góc BAD = Góc ACN b) AN2 = NM.NC; c) N là trung điểm của AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
c: góc BDC=1/2*góc BOC=60 độ
BD//AC
=>góc DCx=góc BDC=60 độ(so le trong)
=>góc ODC=góc OCD=90-60=30 độ
góc BDO=góc CDO=30 độ
=>góc BOD=góc COD=120 độ
=>ΔBOD=ΔCOD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,O,D thẳng hàng
ai đó làm dùng cái tôi cũng đang cần bài này :((