Tìm các cặp số nguyên x,y thỏa mãn
lx+2l+lx-1l=3-(y+2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:
\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)
\(\ge\left|x+3+1-x\right|=4\left(1\right)\)
Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)
\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)
\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)
Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)
Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Lập bảng xét dấu là ra thôi bài này dễ mà
a) 8 - |x + 2| = 5
-|x + 2| = 5 - 8
-|x + 2| = -3
|x + 2| = 3
x + 2 = 3; -3
x + 2 = 3 hoặc x + 2 = -3
x = 3 - 2 x = -3 - 2
x = 1 x = -5
=> x = 1 hoặc x = -5
a: TH1: x<-1
Pt sẽ là 3(2-x)-(-x-1)=x+5
=>6-3x+x+1=x+5
=>-3x+7=5
=>-3x=-2
=>x=2/3(loại)
TH2: -1<=x<2
Pt sẽ là 3(2-x)-x-1=x+5
=>6-3x-x-1=x+5
=>-4x+5=x+5
=>x=0(nhận)
TH3: x>=2
Pt sẽ là 3x-6-x-1=x+5
=>2x-7=x+5
=>x=12(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là 2-x+x+2=4-y^2
=>-y^2=0
=>y=0
TH3: x>=2
Pt sẽ là x-2+x+2=4-y^2
=>2x+y^2=4
a: TH1: x<-2
Pt sẽ là -3x-6+x+1=x+5
=>-2x-5=x+5
=>-3x=10
=>x=-10/3(nhận)
TH2: -2<=x<-1
Pt sẽ là 3x+6+x+1=x+5
=>3x+7=5
=>3x=-2
=>x=-2/3(loại)
TH3: x>=-1
Pt sẽ là 3x+6-x-1=x+5
=>2x+5=x+5
=>x=0(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là x+2+2-x=4-y^2
=>4=4-y^2
=>y=0
TH3: x>=2
Pt sẽ là x+2+x-2=4-y^2
=>2x=-y^2
Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)
Dấu "=" xảy ra khi:\(\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)