K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác nàybằng ba góc đối diện với b a cạnh của tam giác kia. Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A'B'C' ta viết: ∆ABC= ∆A'B'C'. 

- Có 3 trường hợp bằng nhau của tam giác + Nếu 3 cạnh của tam giác này bằng 3 cạnh của tam giác kia thì 2 tam giác đó bằng nhau( c-c-c) + Nếu 2 cạnh và góc xen giữa của tam giác này bằng 2 cạnh và góc xen giữa của tam giác kia thì 2 tam giác đó bằng nhau(c-g-c) + Nếu 1 cạnh và 2 góc kề của tam giác này bằng 1 cạnh và 2 góc kề của tam giác kia thì 2 tam giác đó bằng nhau(g-c-g) * Hệ quả 1: Nếu 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của tam giác vuông này bằng 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của tam giác vuông kia thi hai tam giác vuông đó bằng nhau * Hệ quả 2; Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và 1 góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau

11 tháng 1 2018

Tam giác = nhau => đồng dạng => hệ quả => 1=1=1=1=1  :)))))))))))

24 tháng 1 2017

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 2 2018

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 1 2018

- Có 3 trường hợp bằng nhau của tam giác

+ Nếu 3 cạnh của tam giác này bằng 3 cạnh của tam giác kia thì 2 tam giác đó bằng nhau( c-c-c)

+ Nếu 2 cạnh và góc xen giữa của tam giác này bằng 2 cạnh và góc xen giữa của tam giác kia thì 2 tam giác đó bằng nhau(c-g-c)

+ Nếu 1 cạnh và 2 góc kề của tam giác này bằng 1 cạnh và 2 góc kề của tam giác kia thì 2 tam giác đó bằng nhau(g-c-g)

* Hệ quả 1:

Nếu 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của tam giác vuông này bằng 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của tam giác vuông kia thi hai tam giác vuông đó bằng nhau

* Hệ quả 2;

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và 1 góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau

Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác nàybằng ba góc đối diện với b a cạnh của tam giác kia. Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A'B'C' ta viết: ∆ABC= ∆A'B'C'.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Xét \(\Delta{ABC}\) và \(\Delta{DEF}\) có:

AB = DE (gt)

\(\widehat {BAC} = \widehat {EDF}\) (gt)

AC = DF (gt)

\(\Rightarrow \Delta{ABC}=\Delta{DEF}\) (c-g-c)

b) Ta có: \(\widehat B + \widehat C = \widehat Q + \widehat R = 90^0\)

Mà \(\widehat B = \widehat Q\) \( \Rightarrow \widehat C = \widehat R\)

Xét \(\Delta{ABC}\) và \(\Delta{PQR}\) có:

\(\widehat C = \widehat R\) (gt)

BC = QR (gt)

\(\widehat B = \widehat Q\) (gt)

\(\Rightarrow \Delta{ABC}=\Delta{PQR}\)  (g-c-g)

c) Xét \(\Delta{ABC}\) và \(\Delta{HKG}\) có:

\(\widehat C = \widehat G\) (gt)

AC = HG (gt)

\(\widehat A = \widehat H\) (gt)

\(\Rightarrow \Delta{ABC}=\Delta{HKG}\) (g-c-g)

16 tháng 8 2016

Trường hợp bằng nhau thứ nhất : cạnh - cạnh - cạnh

Trường hợp bằng nhau thứ hai : cạnh - góc - cạnh

Trường hợp bằng nhau thứ ba : góc - cạnh - góc

16 tháng 8 2016

Trường hợp 1. cạnh - cạnh - cạnh
Trường hợp 2. cạnh - góc - cạnh 
Trường hợp 3. góc- cạnh - góc
==> Mình nhớ trong sgk có mà ? 

13 tháng 11 2016

Có 4 Trường hợp bằng nhau của tam giác :

Trường hợp bằng nhau thứ nhất của tam giác là : Cạnh cạnh cạnh

Trường hợp bằng nhau thứ hai của tam giác là : Cạnh Góc Cạnh

Trường hợp bằng nhau thứ ba của tam giác là  : Góc Cạnh Góc 

Trường hợp bằng nhau thứ tư của tam giác là  : Cạnh Huyền Góc Nhọn

Nếu đúng thì cho mình tích nha bạn !

5 tháng 12 2016

Có 3 trường hợp bằng nhau của tam giác, từ 3 điều trên suy ra thêm 4 trường hợp bằng nhau của tam giác vuông:

Cạnh Cạnh Cạnh => Cạnh Huyền Cạnh Góc Vuông

Cạnh Góc Cạnh => Hai Cạnh Góc Vuông

Góc Cạnh Góc => 1/Cạnh Huyền Góc Nhọn

                            2/Cạnh góc vuông và góc nhọn kề nó

8 tháng 4 2018

So sánh:

Trường hợp Giống nhau Khác nhau
Bằng nhau Đồng dạng
1 3 cạnh 3 cạnh tương ứng bằng nhau 3 cạnh tương ứng tỉ lệ
2 2 cạnh 1 góc 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau 2 cạnh tương ứng tỉ lệ
3 2 góc bằng nhau 1 cạnh và 2 góc kề tương ứng bằng nhau Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh
10 tháng 4 2018

So sánh:

Trường hợp Giống nhau Khác nhau
Bằng nhau Đồng dạng
1 3 cạnh 3 cạnh tương ứng bằng nhau 3 cạnh tương ứng tỉ lệ
2 2 cạnh 1 góc 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau 2 cạnh tương ứng tỉ lệ
3 2 góc bằng nhau 1 cạnh và 2 góc kề tương ứng bằng nhau Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh
25 tháng 3 2022

hai tam giác ABC và DEF có góc A bằng góc D góc B bằng góc E  AB=8cm CD=10cm DE=6cm tính độ dài các cạnh AC,DE,EF biết rằng AC dàu hơn CF là 3cm