GPT: x^4+6x^3+7x^2-6x+1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{2}{7}\)
\(\sqrt{5x^2-5x+3}-\left(x+1\right)+2x-\sqrt{7x-2}+4x^2-7x+2=0\)
\(\Leftrightarrow\dfrac{4x^2-7x+2}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{4x^2-7x+2}{2x+\sqrt{7x-2}}+4x^2-7x+2=0\)
\(\Leftrightarrow\left(4x^2-7x+2\right)\left(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1\right)=0\)
Ta có \(\dfrac{1}{\sqrt{5x^2-5x+3}+\left(x+1\right)^2}+\dfrac{1}{2x+\sqrt{7x-2}}+1>0\)
\(\Rightarrow4x^2-7x+2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)
\(\)
<=> x3 + 3x2 + 3x + 1 = 0
<=> (x+1)3 = 0
<=> x+ 1 = 0
<=> x = -1
PT có nghiệm là x = -1
@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.
ĐK:...
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))
\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)
\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
câu a đề có sai số mũ ko vậy
b) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
\(=\dfrac{x^3\left(x+1\right)-\left(x+1\right)}{x^4+x^3+x^2+x^2+x+1}\)
\(=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+1\right)}=\dfrac{x^2-1}{x^2+1}\)
c) \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
\(=\dfrac{\left(x^2+3x\right)^2-1}{x^4+6x^3+9x^2-2x^2-6x+1}\)
\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1}\)
\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x-1\right)^2}=\dfrac{x^2+3x+1}{x^2-3x+1}\)