K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

              \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)

\(\Leftrightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\)\(x^2y+xyz+x^2z+xy^2+xyz+y^2z+x^2z+xyz+xz^2-xyz=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)                  (chỗ này mk lm tắt nha)

\(\Leftrightarrow\)\(x+y=0\)       \(\Leftrightarrow\)   \(z=a\)

          \(y+z=0\)                     \(x=a\)

         \(x+z=0\)                      \(y=a\)

Vậy  tồn tại 1 trong 3 số  x,y,z = a       (đpcm)

27 tháng 12 2020

Cấu hỏi đâu mà trả lờihum

NV
27 tháng 12 2020

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)

23 tháng 12 2017

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

3 tháng 9 2015

Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a

=> 1/x + 1/y + 1/z = 1/ ( x + y + z )

<=>( xy + yz + xz )/xyz = 1/ x + y + z

<=>( xy + yz + xz ) ( x + y + z ) = xyz

Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :

( x + y ) ( y + z ) ( z + x ) = 0

=> x = -y => x = a

hoặc y = -z =>x = a

hoặc z = -x => y = a

Nhớ Li - ke nhé !!!

Chúc học tốt !!!

22 tháng 5 2015

Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)

Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0

=> x+y=0 => z =2015

hoặc y+z=0 => x=2015

hoặc x+z=0 => y=2015

                         Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)

               lik.e nhé!

30 tháng 10 2017

đề có sai k vậy bạn?

23 tháng 1 2018

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM