Tìm x :
a) Ix-1 phần 2I=1 phần 2=1
b)2 mũ 3 nhân 2 mũ x cộng 1=64
Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2=1^2\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy x = 3 hoặc x = 1
\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\)
<=> 2x = -1
<=> x = -0,5
Vậy x = -0,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+2\\x=-1+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy\(x\in\left\{3;1\right\}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-1\times2\)
\(x=-2\)
\(x\left(\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x\left(\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\frac{1}{2}=\frac{1}{4}\\x\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}:\frac{1}{2}\\x=-\frac{1}{4}:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
5 . y . \(\frac{1}{2}\). x3y(\(\frac{-1}{3}\).x2.y)3= \(\frac{5}{2}\)x3y2 \(\frac{-1}{27}\) x6y3= \(\frac{-5}{54}\)x9y5
Hệ số \(\frac{-5}{54}\)
Phần biến : x9y5
Bậc : 14
Chúc bạn học tốt !!!
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{2^3}<\frac{1}{2.3}\)
\(\frac{1}{2^4}<\frac{1}{3.4}\)
..........
\(\frac{1}{2^n}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)
Mà \(1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+.....+\frac{1}{2^n}<1\left(đpcm\right)\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)