điểm D trên cạnh BC của tam giác ABC thỏa mãn AL có độ dài gấp đôi đường trung tuyến CM. Giả sử ALC=45° CM: AL vuông góc CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(K\) là trung điểm của \(AL\Rightarrow MK\) là đường trung bình của \(\Delta ABL\)
\(\Rightarrow AK=KL=\frac{1}{2}AL\) và \(MK//BL\)
Theo định lí ta-lét ta có:
\(\frac{KO}{OL}=\frac{MO}{OC}\Rightarrow\frac{OK+OL}{OL}=\frac{MO+OC}{OC}\Rightarrow\frac{KL}{OL}=\frac{MC}{OC}\)
Lại có: \(KL=MC\Rightarrow OL=OC\)
\(\Rightarrow\Delta OCL\) cân tại \(O\)
Mà: \(\widehat{ALC}=45^0\)
\(\Rightarrow\Delta OCL\) vuông cân tại \(O\)
\(\Rightarrow AL\perp CM\left(đpcm\right)\)
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
GT | ΔABC cân tại A, M là trung điểm của BC \(D\in\)AB DE\(\perp\)MA(E\(\in\)AC) |
KL | a: ΔAMB=ΔAMC b: ΔADE cân |
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
=>AM là phân giác của góc DAE
Xét ΔADE có
AM là đường cao
AM là đường phân giác
Do đó: ΔADE cân tại A
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath