Chứng minh (18n+5) và (21n+6) là hai số nguyên tố cùng nhau.( Nói cả cách làm nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18n + 5 và 21n + 6
Ta có :
Gọi d là UC( 18n+5 và 21n+6)
=> 18n+5 , 21n+6 chia hết cho d
=> 21(18n+5) , 18(21n+6) chia hết cho d
=> 378n+105, 378n +108 chia hết cho d
=> 378n+108- 378n+105 chia hết cho d
=> 2 chia hết cho d
=> d thuộc U(2)
=> d thuộc { 1,2}
1, Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - (4n + 6) chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 là số lẻ và 2n + 3 chia hết cho d => d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Đặt (9n+24, 2n+4) =d
=> 9n+24 chia hết cho d => 18n +48 chia hết cho d
2n +4 chia hết cho d => 18n +36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc {1, 2, 3, 4, 6, 12}
Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau => d=1 => d không chia hết cho 2 và d không chia hết cho 3
+) d không chia hết cho 2
=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z
+) d không chia hết cho 3
=> 2n+4 không chia hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z
Em làm tiếp nhé!
đặt ( 9n + 24 , 2n + 4 ) = d
=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d
2n + 4 chia hết cho d => 18n + 36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc { 1,2,3,4,6,12}
để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia hết cho 3
+, d không chia hết cho 2
=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z
+, d không chia hết cho 3
=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z
còn lại bn tuej lm nhé
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #