Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
1, Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - (4n + 6) chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 là số lẻ và 2n + 3 chia hết cho d => d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Gọi d là UCLN(18n+3,21n+7)
\(\Rightarrow\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}\left(18n+3\right):3⋮d\\\left(21n+7\right):7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+1⋮d\\6n+2⋮d\end{cases}}}\)
Vì 6n+1,6n+2 là hai số tự nhiên liên tiếp nên d=1
=> 18n+3 và 21n+7 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
b,
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)chia het cho d \(\Rightarrow\)21chia het d\(\Rightarrow\)d \(\in\){3;7}.
Hiển nhiên d \(\ne\)3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d\(\ne\)7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7
\(\Leftrightarrow\)18(n−1) không chia hết cho 7
\(\Leftrightarrow\)n−1 không chia hết cho 7
\(\Leftrightarrow\)n\(\ne\)7k+1(k\(\in\)n)
Kết luận: Với n\(\ne\)7k+1(k\(\in\)N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
a,
ko bt **** nhe con cau a ban hoi ng khac thu xem
a)Giả sử ƯCLN(9n+24,3n+4)=d
=>9n+24 chia hết cho d,3n+4 chia hết cho d
=>9n +24 chia hết cho d,9n+12 chia hết cho d
=>(9n+24)-(9n+12) chia hết cho d
=>12 chia hết cho d
=>d=1;2;3;4;6;12
phần còn lại để mai tớ làm tiếp cho hoặc cậu cứ phát triển bài toán theo từng bước như trên nhé!
a/ A=9n+24 và B=3n+4
giả sử k là ước lớn nhất => (9n+24-9n-12) chia hết cho k
12 chia het cho k
hay k=(1,2,3,4,6,12)
k=3,6 B ko chia hết cho 3 loại
với k=2 cần A, họac B không chia hết cho 2 tất nhiên ko chia hết cho 4,12
B=3n+4 không chia hết cho 2
=>họ nghiệm là n=2p+1
đáp số: n=2p+1
b/
Đặt (9n+24, 2n+4) =d
=> 9n+24 chia hết cho d => 18n +48 chia hết cho d
2n +4 chia hết cho d => 18n +36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc {1, 2, 3, 4, 6, 12}
Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau => d=1 => d không chia hết cho 2 và d không chia hết cho 3
+) d không chia hết cho 2
=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z
+) d không chia hết cho 3
=> 2n+4 không chia hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z
Em làm tiếp nhé!
đặt ( 9n + 24 , 2n + 4 ) = d
=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d
2n + 4 chia hết cho d => 18n + 36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc { 1,2,3,4,6,12}
để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia hết cho 3
+, d không chia hết cho 2
=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z
+, d không chia hết cho 3
=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z
còn lại bn tuej lm nhé