K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

{10} ; {12} ; {14} ; {10;12} ; {10;14} ; {12;14} ; {10;12;14}

= là sao ????

ghi sai hả

xcvvvvvvvvvvvvvvvvvvv

24 tháng 8 2019

ghi lộn nha= là + á

9 tháng 11 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{8b}{8d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a+8b}{5c+8d}\) (1)

\(\frac{5a}{5c}=\frac{8b}{8d}=\frac{5a-8b}{5c-8d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}.\)

\(\Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\left(đpcm\right).\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}.\)

\(\Rightarrow\frac{a^{10}}{c^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\left(đpcm\right).\)

Chúc bạn học tốt!

9 tháng 11 2019

a) Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{5a+8b}{5c+8d}=\frac{5a-8b}{5c-8d}\\ \Rightarrow\frac{5a+8b}{5a-8b}=\frac{5c+8d}{5c-8d}\)

b) Có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{10}}{c^{10}}=\frac{b^{10}}{d^{10}}=\frac{a^{10}+b^{10}}{c^{10}+d^{10}}\)

NV
30 tháng 3 2023

\(A=10^{1991}.\left(1+10+10^2+10^3\right)+1238=1111.10^{1991}+1238\)

\(\left\{{}\begin{matrix}10⋮2\\1238⋮2\end{matrix}\right.\) \(\Rightarrow A⋮2\)

\(10\equiv1\left(mod9\right)\Rightarrow10^{1991}\equiv1\left(mod9\right)\) 

Và \(1111\equiv4\left(mod9\right)\Rightarrow1111.10^{1991}\equiv4\left(mod9\right)\)

\(1238\equiv5\left(mod9\right)\)

\(\Rightarrow1111.10^{1991}+1238\equiv4+5\left(mod9\right)\)

Do \(4+5⋮9\Rightarrow A⋮9\)

Mà 2 và 9 nguyên tố cùng nhau \(\Rightarrow A⋮19\)

\(1111.10^{1991}=100.1111.10^{1989}⋮4\) do 100 chia hết cho 4

Và \(1238\) chia hết cho 2 mà ko chia hết cho 4

\(\Rightarrow A\) chia hết cho 2 mà ko chia hết cho 4

\(\Rightarrow\) A không phải là số chính phương

30 tháng 3 2023

A=1111000.....001238(1991-4=1987 chữ số 0)

Tổng các số hạng của A là 1+1+1+1+0x1987+1+2+3+8=18 chia hết cho 9(1)

Mà A chẵn => A chia hết cho 2(2)

Từ (1) và (2),(9,2)=1 =>A chia hết cho 2x9=18

Vậy A chia hết cho 18

Vì A có tận cùng là 8 nên A không thể là số cp

 

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

2 tháng 3 2017

Theo đề bài ta có :

\(a^n=a^{10}\cdot\left(a^2\right)^{10}\cdot\left(a^3\right)^{10}...\left(a^{10}\right)^{10}\)

\(\Leftrightarrow a^n=a^{10}\cdot a^{20}\cdot a^{30}...a^{100}\)

\(\Rightarrow a^n=a^{10+20+30+...+100}\)

\(\Rightarrow n=10+20+30+...+100\)

\(\Rightarrow n=550\)

Đáp số : n = 550.