K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

x2 - x + 1

= x2 - 2.x.\(\frac{1}{2}\)\(\frac{1}{4}\)\(\frac{3}{4}\)

= ( x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\ge\)\(\frac{3}{4}\)( vì (x - 1/2)2 \(\ge\)0 )

8 tháng 3 2017

Biểu thức xác định khi x – 1 ≠ 0, x 2 - 2 x + 1   ≠  0 và x 2 - 1 ≠ 0

x – 1  ≠  0 ⇒ x  ≠  1

x 2 - 2 x + 1   ≠  0 ⇒ x - 1 2 ≠  0 ⇒ x  ≠  1

x 2 - 1 ≠ 0 ⇒ (x – 1)(x + 1)  ≠  0 ⇒ x  ≠  -1 và x  ≠  1

Vậy biểu thức xác định với x  ≠  -1 và x  ≠  1

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào biến x.

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

15 tháng 7 2019

Để ch dễ nhìn bạn đặt √x=a ta sẽ dc

a^2-a+1

=(a^2-2.a.1/2+1/4)+3/4

=(a+1/2)^2+3/4>=3/4>0

Như vậy đó bạn

Kết quả của câu hỏi này bạn cần nhớ để sử dụng cho các bài toán, nhất là cm bất đẳng thức

15 tháng 7 2019

Mình xin lỗi

Dòng t5 bạn sửa dấu + thành dấu -

28 tháng 12 2021

\(x^2-4x+8\\ =\left(x-2\right)^2+4\ge4>0\forall x\)

15 tháng 3 2016

x^8>=0; x^8-x^5>=0;

x^2>=0; x^2-x>=0;

x^8-x^5+X^2-X+1>=1;

$x^2+2x+7$

$=x^2+2x+1+6$

$=(x+1)^2+6$

Vì $(x+1)^2 \ge 0$

$\Rightarrow (x+1)^2+6 \ge 6>0\forall x$

Hay $x^2+2x+7>0\forall x$

Ta có: \(x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6>0\forall x\)(đpcm)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

26 tháng 12 2021

\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4>0\)

Vậy biểu thức \(x^2-4x+8\) luôn dương với mọi x

26 tháng 12 2021

\(x^2-4x+8\\ =x^2-4x+4+4\\ =\left(x-2\right)^2+4\ge4>0\forall x\)