tính tổng S= \(\frac{1}{5.6}\)+\(\frac{1}{10.9}\)+\(\frac{1}{15.12}\)+....+\(\frac{1}{3350.2013}\)
cho biểu thức S= \(\frac{2}{10.12}\)+\(\frac{2}{12.14}\)+\(\frac{2}{14.16}\)+...+\(\frac{2}{98.100}\). Chứng minh S < \(\frac{1}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)
S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)
S=\(\frac{1}{10}-\frac{1}{100}\)
S=\(\frac{9}{100}\)<\(\frac{1}{10}\)
\(B=\frac{1}{5.6}+\frac{1}{10.9}+\frac{1}{15.12}+...+\frac{1}{3350.2013}\)
\(B=\frac{1}{5.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{670.671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{670}-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\frac{670}{671}=\frac{134}{2013}\)
Nguyễn Huy Thắngsoyeon_Tiểubàng giảiSilver bulletLê Nguyên HạoPhương AnVõ Đông Anh Tuấnsoyeon_Tiểubàng giảiLê Thị Linh ChiNguyễn Huy Tú
s=\(\frac{1}{5.3.2}\) +\(\frac{1}{5.3.2.3}\) +.............+\(\frac{1}{5.3.670.671}\)
s=1/15(1/1.2+1/2.3+..................+1/670.671)
s=1/15(1-1/2+1/2-1/3+.............+1/670-1/671)
s=1/15(1-1/671)
s=1/15.670/671
s=134/2013
Đặt tổng trên là A ta có
\(2A=\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.52}\)
\(2A=\frac{12-10}{10.12}+\frac{14-12}{12.14}+\frac{16-14}{14.16}+...+\frac{50-48}{48.50}\)
\(2A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}=\frac{1}{10}-\frac{1}{50}=\frac{2}{25}\)
\(\Rightarrow A=\frac{2A}{2}=\frac{1}{25}\)
Đặt \(A=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{48\cdot50}\)
\(A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
\(A=\frac{1}{10}-\frac{1}{50}=\frac{5}{50}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25}\)
Vậy \(A=\frac{2}{25}\)
= \(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
= \(\frac{1}{10}-\frac{1}{50}\)= \(\frac{2}{25}\)
Ta có: A=\(\frac{1}{10\cdot12}+\frac{1}{12\cdot14}+\frac{1}{14\cdot16}+...+\frac{1}{38\cdot40}\)
=> \(A=\frac{1}{4}\cdot\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{19\cdot20}\right)\)
=\(\frac{1}{4}\cdot\left(\frac{6-5}{5\cdot6}+\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{20-19}{19\cdot20}\right)\)
= \(\frac{1}{4}\cdot\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\right)\)
= \(\frac{1}{4}\cdot\left(\frac{1}{5}-\frac{1}{20}\right)\)
= \(\frac{1}{4}\cdot\frac{3}{20}=\frac{3}{80}\)
Vậy A= 3/80
A = 1/10 - 1/12 + 1/12 - 1/14 + ....+ 1/38 - 1/40
A = 1/10 - 1/40
A = 4/40 - 1/40
A = 3/40
Chúc bạn học tốt !
S=1/5.6+1/10.9+1/15.12+...+1/3350.2013
=(1/5).(1/3).(1/1.2+1/2.3+1/3.4+...+1/670.671)
=(1/15). (1-1/2+1/2-1/3+...+1/670-1/671)
=(1/15). (1-1/671)
=1/15.670/671
=134/2013