Chào các bạn! Mong các bạn chỉ
A= 2+2^2+2^3+2^4+...+2^60 chứng minh A chia hết cho 15
Mình cần gấp mong các bạn chỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 2^2 + 2^3 + ... + 2^60 (1)
Suy ra :
2A = 2^2 + 2^3 + 2^4 + ... + 2^61 (2)
Lay (2) tru (1) thi duoc :
A = 2^61 - 2 = 2.(2^61 - 1)
Ta có : 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211 + 212 + ... + 231 + 232 + 233 + 234 + 235 + 236
= (2 + 22 + 23 + 24 + 25 + 26) + (27 + 28 + 29 + 210 + 211 + 212) + ... + (231 + 232 + 233 + 234 + 235 + 236)
= (2 + 22 + 23 + 24 + 25 + 26) + 26.(2 + 22 + 23 + 24 + 25 + 26) + .... + 230.(2 + 22 + 23 + 24 + 25 + 26)
= (2 + 22 + 23 + 24 + 25 + 26).(1 + 26 + ... + 230)
= 126.(1 + 26 + ... + 230)
= 21.6.(1 + 26 + ... + 230) \(⋮\)21
=> 2 + 22 + 23 + 24 + ... + 235 + 236 \(⋮\)21 (đpcm)
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
\(B=2+2^2+2^3+2^4+...+2^9+2^{10}\)
\(2B=2^2+2^3+2^4+...+2^{10}+2^{11}\). Do 2B - B = B nên
\(B=\left(2^2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^9+2^{10}\right)\)
\(=2^{11}-2⋮3^{\left(đpcm\right)}\)
\(B=2+2^2+2^3+2^4+...+2^9+2^{10}\)
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^9.3\)
\(B=3\left(2+2^3+...+2^9\right)⋮3\) ( đpcm )
Vậy \(B⋮3\)
Q = (a - 2)(a + 3) - (a - 3)(a + 2)
thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra lẻ * chẵn - chẫn * lẻ = chẵn - chẵn = chẵn (1)
thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra chẵn * lẻ - lẻ * chẵn = chẵn - chẵn = chẵn (2)
Từ (1) và (2) suy ra đpcm
ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)\(⋮\)14
=> ĐPCM
\(2\left(1+2+2^2+2^3\right)+..\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(2.15+.....2^{57}\left(1+2+2^2+2^3\right)\)
\(2.15+....2^{57}.15=15.\left(2+.....+2^{57}\right)\)
->A=15.(2+.......+2^57)->A chia hết cho 15