Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là a, b (a, b chia 3 có dư) :
Ta có số không chia hết cho 3 gồm 2 dạng : 3k+1 và 3k+2 (k thuộc tập hợp số tự nhiên).
Vì a, b có số dư khác nhau => (a, b) = (3k+1, 3k+2) hoặc (b, a) = (3k+1, 3k+2)
=>a+b = 3k+1+3k+2
=3k+3k+3
=3(k+k+1) (chia hết cho 3)
Vậy 3k+1+3k+2 chia hết cho 3
=>a+b chia hết cho 3
=
A = ( 2+22+23) + (24+25+26) + (27+28+29)+ (210+211+212)
A = 2.(1+2+22) +24.(1+2+22) +27.(1+2+22)+ 210.(1+2+22)
A = 2.7+24.7 +27.7+ 210.7
A = 7.( 2+24+27+210)
Suy ra A chia hết cho 7
A=2+22+23+24+25+26+27+28+29+210+211+212
=2(1+2+22)+24(1+2+22)+27(1+2+22)+210(1+2+22)
=2.7+2.7+2.7+2.7
Vậy A chia hết cho 7
1+2+...+99\(=\frac{99.100}{2}=99.50=2.3^2.5.11\) chia hết cho 2,3,5,9.
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
\(2\left(1+2+2^2+2^3\right)+..\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(2.15+.....2^{57}\left(1+2+2^2+2^3\right)\)
\(2.15+....2^{57}.15=15.\left(2+.....+2^{57}\right)\)
->A=15.(2+.......+2^57)->A chia hết cho 15
ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)\(⋮\)14
=> ĐPCM
\(B=2+2^2+2^3+2^4+...+2^9+2^{10}\)
\(2B=2^2+2^3+2^4+...+2^{10}+2^{11}\). Do 2B - B = B nên
\(B=\left(2^2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^9+2^{10}\right)\)
\(=2^{11}-2⋮3^{\left(đpcm\right)}\)
\(B=2+2^2+2^3+2^4+...+2^9+2^{10}\)
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^9.3\)
\(B=3\left(2+2^3+...+2^9\right)⋮3\) ( đpcm )
Vậy \(B⋮3\)