K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2024

Vì 2 - 3 = 1

1 là ước của tất cả các số nên 1 là ước của 5

Vậy 5 chia hết cho 2 - 3 (đpcm)

19 tháng 2 2016

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15

9 tháng 7 2019

\(A=2+2^2+......+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3⋮3\)

9 tháng 7 2019

\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)

\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)

\(=2\cdot7+.....+2^{58}\cdot7⋮7\)

7 tháng 12 2019

a) Ta có : 7101=7.(74)25=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

               75=7.(74)1=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

Mà \(\left(\overline{...7}\right)-\left(\overline{...7}\right)=\overline{...0}⋮10\)

hay 7101-75\(⋮\)10

Vậy 7101-75\(⋮\)10.

31 tháng 12 2022

b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)

=4(3+3^3+...+3^2009) chia hết cho 4

B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)

=13(3+3^4+...+3^2008) chia hết cho 13

c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)

4 tháng 12 2016

1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)

\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)

\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)

\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)

25 tháng 12 2015

 

Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:

S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)

=(5+52+53+54+55+56)(1+56+...+590)

Ta có 
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126

S⋮126 (ĐPCM)