5 chia hết cho 2-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)
b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)
=4(3+3^3+...+3^2009) chia hết cho 4
B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)
=13(3+3^4+...+3^2008) chia hết cho 13
c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)
d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)
1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)
\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)
\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126
→S⋮126 (ĐPCM)
Vì 2 - 3 = 1
1 là ước của tất cả các số nên 1 là ước của 5
Vậy 5 chia hết cho 2 - 3 (đpcm)