Cho biểu thức :\(B=\frac{\sqrt{a}}{\sqrt{ab}+\sqrt{a}+3}+\frac{\sqrt{b}}{\sqrt{bc}+\sqrt{b}+1}+\frac{3\sqrt{c}}{\sqrt{ac}+3\sqrt{c}+3}\) . với a, b, c > 0
Biết abc=9 ,a,b,c>0. Tính.\(\sqrt{B}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)
Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)
Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)
\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)
Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)
Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.
Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a+b+c=7⇔c=7−a−b
Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab+c−61=ab+7−a−b−61=(a−1)(b−1)1
Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a−1)(b−1)1+(b−1)(c−1)1+(c−1)(a−1)1
=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a−1)(b−1)(c−1)a+b+c−3=abc−(ab+bc+ca)+(a+b+c)−1a+b+c−3
=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab+bc+ca)+7−17−3=9−(ab+bc+ca)4
Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab+bc+ca=2(a+b+c)2−(a+b+c)=13
Suy ra: N=\frac{4}{9-13}=-1N=9−134=−1. Kết luận: N = -1.
Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b+c\right)\)
=> \(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{ab\left(a+b+c\right)}}{ab}=\frac{\sqrt{a+b+c}}{\sqrt{ab}}\)
Tuong tu: \(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{a+b+c}}{\sqrt{bc}}\)
\(\sqrt{1+c^3+a^3}\ge\frac{\sqrt{a+b+c}}{\sqrt{ca}}\)
suy ra: \(\frac{\sqrt{1+a^3+b^3}}{ab}+\frac{\sqrt{1+b^3+c^3}}{bc}+\frac{\sqrt{1+c^3+a^3}}{ca}\ge\sqrt{a+b+c}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
\(\ge\sqrt{3\sqrt[3]{abc}}.3\sqrt[3]{\frac{1}{\sqrt{ab}}.\frac{1}{\sqrt{bc}}.\frac{1}{\sqrt{ca}}}=3\sqrt{3}\) (dpcm)
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
a) \(A=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(A=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(A=\frac{\sqrt{3}+1}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}\)
\(A=1\)
b) Ta có:
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) ( x >= 0, x khác 9 )
\(B=\frac{3+\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{3+\sqrt{x}+3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{\left(3+\sqrt{x}\right)+3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4\left(3+\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(B=\frac{4}{3-\sqrt{x}}\)
Để B > A
\(\Rightarrow\frac{4}{3-\sqrt{x}}>1\)
\(\Rightarrow4>3-\sqrt{x}\)
\(\Rightarrow4-3+\sqrt{x}>0\)
\(\Rightarrow1+\sqrt{x}>0\)
\(\Rightarrow\sqrt{x}>-1\)
\(\Rightarrow x>1\)
a) A=\(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}+\frac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\left(\sqrt{5}+3\right)-\left(\sqrt{5}+3\right)\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}+0=1\)
b) B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(=\frac{3+\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{9-x}\)
\(=\frac{3+\sqrt{x}+3\sqrt{x}-x}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\text{}\sqrt{x}+12}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)
\(=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(=\frac{4}{3-\sqrt{x}}\)
\(B>A \Leftrightarrow\frac{4}{3-\sqrt{x}}>1\)
các giá trị của x là \(\left\{x\in R\backslash0\le x\le9\right\}\)