\(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\)

tính gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)

Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)

Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)

\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)

Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)

Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.

25 tháng 9 2019

Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a​+b​+c​=7⇔c​=7−a​−b

Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab​+c​−61​=ab​+7−a​−b​−61​=(a​−1)(b​−1)1​

Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a​−1)(b​−1)1​+(b​−1)(c​−1)1​+(c​−1)(a​−1)1​

=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a​−1)(b​−1)(c​−1)a​+b​+c​−3​=abc​−(ab​+bc​+ca​)+(a​+b​+c​)−1a​+b​+c​−3​

=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab​+bc​+ca​)+7−17−3​=9−(ab​+bc​+ca​)4​

Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab​+bc​+ca​=2(a​+b​+c​)2−(a+b+c)​=13

Suy ra: N=\frac{4}{9-13}=-1N=9−134​=−1. Kết luận: N = -1.

30 tháng 12 2018

Ai giúp t câu này vs

30 tháng 12 2018

Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow7^2=23+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=13\)

Ta lại có \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}-6=-\sqrt{a}-\sqrt{b}+1\Leftrightarrow\sqrt{ab}+\sqrt{c}-6=\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

Chứng minh tương tự:

\(\sqrt{bc}+\sqrt{a}-6=\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)\)

\(\sqrt{ac}+\sqrt{b}-6=\left(\sqrt{a}-1\right)\left(\sqrt{c}-1\right)\)

Vậy A=\(\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}=\dfrac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\dfrac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\dfrac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{c}-1+\sqrt{a}-1+\sqrt{b}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-3}{\sqrt{abc}+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}=\dfrac{7-3}{3+7-13-1}=-1\)

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

4 tháng 4 2020

Bài 1 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b) Để \(A< -1\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)

\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}< 1\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)

\(\Leftrightarrow x< \frac{1}{4}\)

Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)