(5x -10)x (x+8)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tích : a.b = 0 <=> a=0 hoặc b=0
Bài giải:
\(x\left(x-1\right)\left(x-2\right)=0\)
TH1: \(x=0\)
TH2: \(x-1=0\)
\(x=1\)
TH3: \(x-2=0\)
\(x=2\)
Vậy x =0 hoặc x=1 hoặc x=2
Trang chủ OLM có mục tiếng anh nhé. Có cả mục Toán 10; 11; 12 tuy nhiên các bạn muốn hỏi các bài toán THPT thì vào trang h.vn để hỏi bài nhé!
\(x\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x-1=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=0\)hoặc \(x=1\)hoặc \(x=2\)
Vậy \(x\in\left\{0;1;2\right\}\)
Câu cuối bạn hỏi ko biết
\(a,\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\\ c,\Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow3\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x-3\right)\left(5x-10\right)=0\\ \Leftrightarrow5\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
a) \(\left(x+8\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\)
b) \(x\left(x-4\right)+5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
c) \(3x\left(x+1\right)-6\left(x+1\right)=0\) \(\Rightarrow\left(3x-6\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-6=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
d) \(5x\left(x-3\right)+10\left(3-x\right)=0\) \(\Rightarrow5x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(5x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-10=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Câu 1:
(3\(x\) - 15).(10 - \(x\)) < 0
3\(x-15\) = 0 ⇒ 3\(x\) = 15 ⇒ \(x\) = 15 : 3 ⇒ \(x=5\)
10 - \(x\) = 0 ⇒ \(x=10\)
Lập bảng ta có:
\(x\) | 5 10 |
3\(x\) - 15 | - 0 + + |
10 - \(x\) | + + 0 - |
(3\(x\) - 15).(10 - \(x\)) | - 0 + 0 - |
Theo bảng trên ta có: \(x\) < 5 hoặc \(x\) > 10
Vậy \(x\) < 5 hoặc \(x\) > 10
(2\(x\) - 8).(6 - \(x\)) ≥ 0
2\(x\) - 8 = 0 ⇒ 2\(x\) = 8 ⇒ \(x=8:2\) ⇒ \(x=4\)
6 - \(x\) = 0 ⇒ \(x=6\)
Lập bảng ta có:
\(x\) | 4 6 |
2\(x-8\) | - 0 + | + |
6 - \(x\) | + | + 0 - |
(2\(x-8\)).(6 - \(x\)) | - 0 + | - |
Theo bảng trên ta có: 4 ≤ \(x\) ≤ 6
Vậy \(4\le x\le6\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
Bài 1:
\(D=\dfrac{5x^2-30x+53}{x^2-6x+10}=\dfrac{5\left(x^2-6x+10\right)+3}{x^2-6x+10}=5+\dfrac{3}{x^2-6x+10}\)
\(=5+\dfrac{3}{\left(x-3\right)^2+1}\)
Ta có: \(\left(x+3\right)^2+1\ge1\Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\le3\)
\(\Rightarrow D\le3+5=8\)
Vậy max D= 8 <=> x=3
Bài 2:
\(8\left(x-3\right)^3+x^3=6x^2-12x+8\)
\(\Leftrightarrow\left[2\left(x-3\right)^3\right]=-x^3+3.2x^2-3.2^2x+2^3\)
\(\Leftrightarrow\left(2x-6\right)^3=\left(2-x\right)^3\)
\(\Leftrightarrow2x-6=2-x\)
\(\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)
Vậy tập nghiệm : \(S=\left\{\dfrac{8}{3}\right\}\)
(5\(x\) - 10)(\(x+8\)) = 0
\(\left[{}\begin{matrix}5x-10=0\\x+8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=10\\x=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=10:5\\x=-8\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy \(x\in\) {-8; 2}