Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\left(99\text{ số hạng 1}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(=99-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)=99-\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=99-\frac{99}{202}>99-\frac{1}{2}=98,5\)
=> A > 98,5
=> A > 98
Ta thấy : \(4=2^2;9=3^2;....;10000=100^2\) nên A có \(\left(100-2\right):1+1=99\) số hạng
Ta có :
\(\frac{3}{4}< \frac{4}{4}=1\)
\(\frac{8}{9}< \frac{9}{9}=1\)
\(\frac{15}{16}< \frac{16}{16}=1\)
\(......\)
\(\frac{9999}{10000}< \frac{10000}{10000}=1\)
\(\Rightarrow A=\frac{3}{4}+\frac{8}{9}+....+\frac{9999}{10000}< 1+1+...+1\)(Vì A có 99 số hạng nên cũng có 99 số 1 tương ứng)
\(\Rightarrow A< 99\)
\(A=\frac{3}{4}+\frac{8}{9}+...+\frac{9999}{10000}\)
\(A=1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{10000}\)
\(A=99-\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{10000}\right)\)
Vì biểu thức trong dấu ngoặc đơn luôn lớn hơn 0 nên A<99
Vậy A<99
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
Olm chào em, đây là toán nâng cao chuyên đề dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
A = \(\dfrac{3}{4}\) + \(\dfrac{8}{9}\) + \(\dfrac{15}{16}\) + ... + \(\dfrac{9999}{10000}\)
A = \(\dfrac{3}{2^2}\) + \(\dfrac{8}{3^2}\) + \(\dfrac{15}{4^2}\) + ... + \(\dfrac{9999}{100^2}\)
Xét dãy số: 2; 3; 4;...; 100
Dãy số trên là dãy số có quy luật, khoảng cách của dãy số là:
3 - 2 = 1
số số hạng của dãy số trên là:(100 - 2) : 1 + 1` = 99
Vậy A gồm 99 hạng tử
Khi đó ta có:
A = 1 - \(\dfrac{1}{4}\) + 1 - \(\dfrac{1}{9}\) + ... + 1 - \(\dfrac{1}{10000}\)
A = (1 + 1 +... + 1) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{9}\) + ... + \(\dfrac{1}{10000}\))
A = 1 x 99 - (\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .. + \(\dfrac{1}{100^2}\))
Đặt B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ...+ \(\dfrac{1}{100^2}\)
\(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(.....................\)
\(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\) = \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
Cộng vế với vế ta có:
B < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
B < \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = 99 - B
A > 99 - (1 - \(\dfrac{1}{100}\))
A > 99 - 1 + \(\dfrac{1}{100}\)
A = 98 + \(\dfrac{1}{100}\) > 98
Vậy A > 98