K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2024

A = 2 + 2+ ... + 259

2A = 22 +23 + ... + 260

2A - A = ( 22 +23 + ... + 260 ) - ( 2 + 2+ ... + 259 )

A = 260 - 2

15 tháng 11 2024

A = 2 + 22 + 23 + 24 +...+ 259 

2A = 2 . 2 + 22 . 2 + 23. 2 + 24. 2 +...+ 259 .2

2A = 22 + 23 + 24 + 25 + ... + 260

2A - A = 22 + 23 + 24 + 25 + ... + 260 

           -

             2 + 22 + 23 + 24 +...+ 259

1A = 260 - 2 

 A = 260 - 2

11 tháng 10 2017

cái này bấm máy tính là ra rùi

2 tháng 10 2018

59 – 43 – 8 = 8           

59 – 42 – 3 = 14           

58 – 41 – 9 = 8

59 – 42 – 4 = 13

Đáp án cần chọn là A

26 tháng 3 2017

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

26 tháng 4 2016

A=2+2^2+2^3+...+2^59+2^60(có 60 số hạng)

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)[có 20 nhóm]

A=14*1+2^3*(2+2^2+2^3)+...+2^57*(2+2^2+2^3)

A=14*1+2^3*14+...+2^57*14

A=14*(1+2^3+...+2^57)

A=7*2*(1+2^3+...+2^57) chia hết cho 7(tick nhabanh)

26 tháng 4 2016

THANK NHÌU NHAok

24 tháng 8 2016

bang 331/60

bang 331/60

24 tháng 8 2016

=331/60

9 tháng 11 2016

Ta có : A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

= 2( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )

= 2 ( 1 + 2 + 4 ) + 24 ( 1 + 2 + 4 ) + ... + 258 ( 1 + 2 + 4 )

= 2 x 7 + 24 x 7 + ... + 258 x 7

= 7 x ( 2 + 24 + ... + 258 ) chia hết cho 7

chia hết cho 15 tương tự

2 tháng 3 2018

tao dóe biet

2 tháng 3 2018

a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101

= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101

=( 2.3.4....100/2.3.4...100) . 1/101

= 1 . 1/101

=1/101

ý b tương tự nhé !

a) Ta có: \(7-\left(2x+4\right)=-\left(x+4\right)\)

\(\Leftrightarrow7-2x-4=-x-4\)

\(\Leftrightarrow-2x+3+x+4=0\)

\(\Leftrightarrow-x+7=0\)

\(\Leftrightarrow-x=-7\)

hay x=7

Vậy: S={7}

b) Ta có: \(\dfrac{2+x}{5}-0.5x=\dfrac{1-2x}{4}+0.25\)

\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{0.5x\cdot20}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{20\cdot0.25}{20}\)

\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)

\(\Leftrightarrow8+4x-10x=5-10x+5\)

\(\Leftrightarrow-6x+8=-10x+10\)

\(\Leftrightarrow-6x+8+10x-10=0\)

\(\Leftrightarrow4x-2=0\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

d) Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-59}{1}+\dfrac{x-58}{2}+\dfrac{x-57}{3}\)

\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}-1=\dfrac{x-59}{1}-1+\dfrac{x-58}{2}-1+\dfrac{x-57}{3}-1\)

\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{1}+\dfrac{x-60}{2}+\dfrac{x-60}{3}\)

\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}\right)-\left(x-60\right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

mà \(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\ne0\)

nên x-60=0

hay x=60

Vậy: S={60}