Chứng minh \(\sqrt{3}\) là một số vô tỉ(2 cách)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\sqrt{2}\)là số hữu tỉ thì \(\sqrt{2}=\frac{a}{b}\left[\left(a,b\right)=1\right]\)
\(\Rightarrow a^2=2b^2\)(1)\(\Rightarrow a^2⋮2\)
Mà 2 là số nguyên tố nên \(a⋮2\)
Đặt a = 2k.Thay vào (1), ta được: \(4k^2=2b^2\Rightarrow2k^2=b^2\)
\(\Rightarrow b^22⋮\).Mà 2 là số nguyên tố nên \(b⋮2\)
Vậy a và b cùng chia hết cho 2, trái với (a,b) =1
Vậy \(\sqrt{2}\)là số vô tỉ hay \(\sqrt{2}+3\)là số vô tỉ (đpcm)
Vì 3 là số hữu tỉ rồi nên phải cần c/m √2 là số vô tỉ là đc!
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)
cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự
vì căn 2 là số vô tỉ
vì cắn 3 là số vô tỉ
và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ
Giả sử √aa là số hữu tỉ .
Đặt √a=pqa=pq (p; q ∈∈ N; q khác 0 và (p;q) = 1)
=> a=p2q2a=p2q2 => a.q2 = p2
Vì p2 là số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Điều giả sử sai
Vậy √aa là số vô tỉ
a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1
\(\implies\) \(b\sqrt{2}=a\)
\(\implies\) \(b^2.2=a^2\)
\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(a\) chia hết cho \(2\)
\(\implies\) \(a^2\) chia hết cho \(4\)
\(\implies\) \(b^2.2\) chia hết cho \(4\)
\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(b\) chia hết cho \(2\)
\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)
\( \implies\) Điều giả sai
\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )
b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )
\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ
Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ
\( \implies\) Mâu thuẫn
\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )
giả sử \(\sqrt{a}\) là số hữu tỉ
\(\sqrt{a}=\frac{m}{n}\) (m, n thuộc N*); (m,n) = 1
do a không phải scp nên \(\frac{m}{n}\)không phải stn
do đó n > 1
ta có: m2 = a.n2
gọi p là ước nguyên tố nào đó của n
thì m2 chia hết cho p, do đó m chia hết cho p
như vậy p là ước số nguyên tố của m, n, trái với (m, n) = 1
=> \(\sqrt{a}\)là số vô tỉ
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
Giả sử các số nguyên tố là một dãy hữu hạn, tăng dần như sau:
\(2;3;5;7;.........;n\)
Xét số \(p=\left(2\times3\times5\times7\times.....\times n\right)+1\)
ta thấy ngay p không chia hết cho \(2;3;5;7;...;n\)
=> p cũng là một số nguyên tố.
Vậy điều giả sử sai hay có vô hạn số nguyên tố.
kết bạn với tui đi!
Giả sử \(\sqrt{3}\) là số hữu tỉ khi đó: \(\sqrt{3}\)= \(\dfrac{a}{b}\) (a; b \(\in\) Z+)
⇒ 3 = \(\dfrac{a^2}{b^2}\) ⇒ 3b2 = a2
Vì a; b \(\in\) Z+ ⇒ a2; b2 là số chính phương
⇒ 3 là số chính phương (vô lý vì số chính phương không thể có tận cùng bằng 3)
Vậy điều giả sử là sai nên \(\sqrt{3}\) là số vô tỉ.