Tìm 2 số tự nhiên a,b khác 0 biết a/b = 2,66 và ƯCLN(a,b)=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ƯCLN(a,b)=27
=>a=27m ; b=27n trong đó ƯCLN(m,n)=1 và m\(\ge\)n
Ta có:a x b=3748
=>27m x 27n=3748
=>729mn=3748
=>m x n=3748:729
=>mn=\(\frac{3748}{729}\)
Vậy đề sai
Bạn kiểm tra lại đề
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
ƯCLN(a,b)=48 nên a=48.m và b=48.n với ƯCLN(m,n)=1. Vì a+b=144 nên 48.m+48.n=144 ... Do m và n là hai nguyên tố cùng nhau.
Vì ƯCLN (a,b)=48 và a+b=48
48m+48n=144
48(m+n)=144
m+n=144:48
m+n=3
m | 1 |
n | 2 |
a | 48 |
b | 96 |
Vậy (a,b)={48;96}
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
Bạn tham khảo nha
Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với
ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*
Ta có a + b = 96 nên 16. m + 16. n = 96
16. (m + n) =96
m + n = 96: 16
m + n = 6
+) Với m = 1; n = 5 ta được a = 1. 16 = 16; b = 5. 16 = 80
+) Với m = 5; n = 1, ta được a = 5. 16 = 80; b = 1. 16 = 16
Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Lời giải:
Gọi $d=ƯCLN(a,b)$ thì đặt $a=dx, b=dy$ với $x,y$ là stn>0 và $(x,y)=1$.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra ta có:
$d+dxy=19$
$\Rightarrow d(1+xy)=19$
Vì $1+xy>1$ với mọi $x,y\in\mathbb{N}^*$ nên $1+xy=19; d=1$
$\Rightarrow xy=18; d=1$
Vì $(x,y)=1, a< b\Rightarrow x<y$
$\Rightarrow x=2, y=9$
$\Rightarrow a=dx=1.2=2; b=1.9=9$
2,6 nha mik viết nhầm