Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
Gọi d là ƯCLN(a,b)
Ta gọi: a=d.m, b = d.n với (m,n) = 1
Ta có BCNN (a,b) = a.b / ƯCLN(a,b) = d.m.d.n / d = m.n.d
Do BCNN (a,b) + ƯCLN (a,b) = 19
=> m.n.d+d=19
=>d(m.n+1) = 19
Do m.n+1>1 và 19=19.1
=>m.n+1=19 và d=1
=>m.n=18 và d=1
m | 1 | 2 | 18 | 9 |
n | 18 | 9 | 1 | 2 |
a | 1 | 2 | 18 | 9 |
b | 18 | 9 | 1 | 2 |
Vậy a=1 thì b=18
a=2 thì b=9
a=18 thì b=1
a=9 thì b=2
Đặt (a;b)=d (1)
=>a=d.m (m,n)=1
b=d.n (m,n thuộc N*)
=>[a;b]=19-d (2)
Từ (1) và (2) mà (a;b).[a;b]=a.b
=>(a;b).[a;b]=d.(19-d)
Mà a=d.m;b=d.n =>a.b=d.(19-d)=d.d.m.n
=>19-d=d.m.n
Theo đề bài,ta có:
(a;b)+[a;b]=19
=>d+d.m.n=19
=>d.(1+m.n)=19
Vì 19=1.19 mà m,n thuộc N* =>1+m.n >1
=>1+m.n=19(với d=1)
=>m.n=19-1=18
Vì m.n=18; m,n thuộc N* ;(m;n)=1 nên ta có bảng sau:
m 1 18 2 9
n 18 1 9 2
a 1 18 2 9
b 18 1 9 2
mà a<b =>(a;b)thuộc{(1;18);(2;9)}
Vậy (a;b) thuộc {(1;18);(2;9)}
Lời giải:
Gọi $d=ƯCLN(a,b)$ thì đặt $a=dx, b=dy$ với $x,y$ là stn>0 và $(x,y)=1$.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra ta có:
$d+dxy=19$
$\Rightarrow d(1+xy)=19$
Vì $1+xy>1$ với mọi $x,y\in\mathbb{N}^*$ nên $1+xy=19; d=1$
$\Rightarrow xy=18; d=1$
Vì $(x,y)=1, a< b\Rightarrow x<y$
$\Rightarrow x=2, y=9$
$\Rightarrow a=dx=1.2=2; b=1.9=9$