Cho tam giác ABC. Gọi N,M lần lượt là trung điểm của AB,AC
a) Chứng minh rằng: Tứ giác BCMN là hình thang
b)Tìm điều kiện của tam giác ABC để tứ giác BCMN là hình thang cân.Chứng minh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toan lop 8 thi mk chiu thoi mk moi hoc lop 7 .ket ban vs mk nhe
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hthang
b, Vì N là trung điểm AC và ME(tc đối xứng) nên AECM là hbh
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//AB
Xét tứ giác ANMB có MN//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông
b: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó; AMCD là hình bình hành
mà MA=MC
nên AMCD là hình thoi
a) Xét \(\Delta\)ABC ta có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN//BC , MN = 1/2 BC (1)
=> MNCB là hình thang
b) Xét tam giác ABC ta có :
N , P là trung điểm AC , BC (2)
=> NP là đường trung bình
Từ (1) và (2) => MNPB là hình bình hành
a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC
=> MN là đường trung bình của \(\Delta\)ABC (1)
=> MN//BC
=> BCNM là hình thang
b) (1) => MN //= \(\frac{1}{2}\) BC mà BP = \(\frac{1}{2}\)BP va B; P; C thẳng hàng ( vì P là trung điểm BC )
=> MN// = BP => MNPB là hình bình hành
c) MN // BC => MN // HP => MNHP là hình thang
(b) => ^MNP = ^MBP => ^MNP = ^MBH (2)
Lại có: ^NMH = ^MHB ( so le trong ) ( 3)
Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB
=> HM = \(\frac{1}{2}\)AB = BM
=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB (4)
Từ (2) ; (3) ; (4) => ^NMH = ^MNP
=> MNPH là hình thang cân
b) Điều kiện để HPNM là hình chữ nhật:
Ta có: HPNM là hình thang cân
=> HPNM là hình chữ nhật MH vuông góc BC
Mặt khác ta có: AH vuông góc BC
=> A; M; H thẳng hàng mà A; M; B thẳng hàng
=> H trùng B
=> Tam giác ABC vuong tại B.
a) dùng đường trung bình của tam giác
b) Để BCMN là hình thang cân thì \(\widehat{A}=\widehat{B}\)
=> \(\Delta ABC\)cân tại A
Mình làm tắt, bạn tự trình bày đầy đủ nhé
a) dùng đường trung bình của tam giác
b) Để BCMN là hình thang cân thì ^A=^B
=> ΔABC cân tại A