So sánh 2 p/s sau bằng cách nhanh nhất
2015/2016 va 2017/2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)
Ta có : \(\frac{1}{2017}>\frac{1}{2018}\)
=>\(1-\frac{1}{2017}< 1-\frac{1}{2018}\)
=>\(\frac{2016}{2017}< \frac{2017}{2018}\)
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
\(S=\frac{1015}{2016}+\frac{2016}{2017}+\frac{2021}{2018}=\frac{1016-1}{2016}+\frac{2017-1}{2017}+\frac{2018+3}{2018}\)
=> \(S=1-\frac{1}{2016}+1-\frac{1}{2017}+1+\frac{3}{2018}=3+\left(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}\right)\)
Nhận thấy; \(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}>0\)=> S > 3
ta thấy : 1-2015/2016=1/2016
1-2017/2018=1/2018
phân số nào có phần bù lớn hơn thì phân số đó bé hơn và ngược lại
vì 1/2016>1/2018 nên 2015/2016<2017/2018
Ta sẽ so sánh phần bù
2016-2015/2016 và 2018-2017/2018=1/2016 và 1/2018
Vì 1/2016>1/2018 nên suy ra 2017/2018>2015/2016
Công thức : Phân số nào có phần bù lớn hơn thì phân số đó lớn hơn
h cho mình nha $ ~~