K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(S=\frac{1015}{2016}+\frac{2016}{2017}+\frac{2021}{2018}=\frac{1016-1}{2016}+\frac{2017-1}{2017}+\frac{2018+3}{2018}\)

=> \(S=1-\frac{1}{2016}+1-\frac{1}{2017}+1+\frac{3}{2018}=3+\left(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}\right)\)

Nhận thấy; \(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}>0\)=> S > 3

Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)


\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Hay \(A>B\)

10 tháng 4 2016

ta có 2015/2016+2016/2017+2017/2015=(1-1/2016)+(1-1/2017)+(2+1/2015)

                                                         =4-(1/2016+1/2017-1/2015)

                   1/2016<1; 1/2017<1 nên 1/2016+1/2017<2 suy ra 1/2016+1/2017-1/2015<1(vì 1/2015<1)

4-(1/2016+1/2017-1/2015)>4-1=3           

2015/2016+2016/2017+2017/2015>3

cho mik nhé                       

13 tháng 8 2017

a, Ta có :

\(A=\dfrac{15}{14}+\dfrac{16}{15}+\dfrac{17}{16}+\dfrac{18}{17}\)

\(\Leftrightarrow A=\left(1+\dfrac{1}{14}\right)+\left(1+\dfrac{1}{15}\right)+\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{17}\right)\)

\(\Leftrightarrow A=\left(1+1+1+1\right)+\left(\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}\right)\)

\(\Leftrightarrow A=4+\left(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}\right)\)

\(\Leftrightarrow A>4\)

b. \(B=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2019}\)

\(\Leftrightarrow B=\left(1-\dfrac{1}{2016}\right)+\left(1-\dfrac{1}{2017}\right)+\left(1-\dfrac{3}{2019}\right)\)

\(\Leftrightarrow B=\left(1+1+1\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)

\(\Leftrightarrow B=3-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)

\(\Leftrightarrow B< 3\)

23 tháng 4 2016

2015/2016+2016/2017+2017/2018+2018/2015 < 4

23 tháng 4 2016

Bé Hơn 4

28 tháng 4 2017

\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)

\(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)

\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)