K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-7\)

Suy ra : \(\left(ab+bc+ac\right)^2=49\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)

\(a^2+b^2+c^2=14\Leftrightarrow\left(a^2+b^2+c^2\right)^2=196\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=256\)  \(\Leftrightarrow a^4+b^4+c^4=98\)

Vậy ... 

17 tháng 4 2022

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc +2ca=0\)

\(\Leftrightarrow2ab+2bc+2ca=-14\)

\(\Leftrightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\).

\(a^2+b^2+c^2=14\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=14^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)

17 tháng 5 2017

Xét đẳng thức a2 + b2 + c2 = 0, ta có :

\(a^2\ge0\)

\(b^2\ge0\)  => a2 + b2 + c2 \(\ge0\)

\(c^2\ge0\)

Mà đề cho a2 + b2 + c2 = 0

=> \(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)

Đồng thời nó cũng thõa mãn điều kiện a + b + c = 0

Ta có :

a4 + b4 + c4  = 0 + 0 + 0 = 0

17 tháng 5 2017

đề nghị bn Kurosaki ko làm đc thì đừng giải tầm bậy nhé , người khác học theo cách giải của bn thì hậu quả thế nào,đã bao giờ mở mang đầu óc như vậy chưa ?

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)

hay \(ab+bc+ac=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)

Ta có: \(M=a^4+b^4+c^4\)

\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy: \(M=\dfrac{1}{2}\)

9 tháng 2 2021

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )

\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)

Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )

\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

Vậy ...

6 tháng 7 2015

lại nhầm lần này đúng

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=2+2(ac+bc+ab)

=>ac+bc+ab=2:2=-1

=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>1=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

22=a4+b4+c4+2.1

4=a4+b4+c4+2

=>a4+b4+c4=2

trieu dang   làm sai đoạn cuối rồi

6 tháng 7 2015

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=2+2(ac+bc+ab)

=>ac+bc+ab=2:2=-1

=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>1=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

22=a4+b4+c4+2.1

4=a4+b4+c4+2

=>a4+b4+c4=2

1 tháng 8 2017

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)

Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)

1 tháng 8 2017

bạn ơi nó phải bằng 2 chứ