Tìm tất cả các số nguyên dương m,n sao cho: \(m^3+n^3+15mn=125\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do mk ko là dân toán nên cx không chắc là đúng, sai đâu mog mn bỏ qua
\(m^3+n^3+15mn=125\)
<=> \(m^3+n^3-125+15mn=0\)
<=> \(\left(m+n\right)^3-3mn\left(m+n\right)-5^3+15mn=0\)
<=> \(\left(m+n-5\right)\left[\left(m+n\right)^2+5\left(m+n\right)+5^2\right]-3mn\left(m+n-5\right)=0\)
<=> \(\left(m+n-5\right)\left(m^2+n^2+5m+5n-mn+25\right)=0\)
TH1: \(m+n-5=0\)
<=> \(m+n=5\)
bạn làm tiếp nhé
TH2: \(m^2+n^2-mn+5\left(m+n\right)+25=0\)
Áp dụng AM-GM ta có:
\(m^2+n^2-mn\ge2\sqrt{m^2.n^2}-mn=2mn-mn=mn\)
Khi đó:
\(m^2+n^2-mn+5\left(m+n\right)+25\)
\(\ge mn+5\left(m+n\right)+25\)
Do m,n là các số nguyên dương nên: \(mn+5\left(m+n\right)+25\ge25\)
=> trường hợp này vô lí
a) Nếu n \(\ge\) 3 thì n! sẽ chia hết cho 1;2;3;... Ta có:
3m - n! = 1
3(3m-1 - 1.2...) =1 => vô lí vì 1 không chia hết cho 3
=> n <3.
Nếu n = 2 thì 3m - 2! = 1
3m - 2 = 1
3m =3
=> m = 1.
Nếu n =1 thì 3m - 1! = 1
3m - 1 =1
3m =2 => vô lí => loại
Vậy n = 2; m =1.
b) Nếu n \(\ge\)3 thì n! chia hết cho 1;2;3;... Ta có:
3m - n! = 2
3(3m-1 - 1.2...) = 2 => vô lí (vì 2 không chia hết cho 3) => n < 3
Nếu n = 2 thì 3m - 2! = 2
3m - 2 = 2
3m = 4 => vô lí => loại
Nếu n = 1 thì 3m - 1! = 2
3m - 1 = 2
3m = 3
=> m = 1.
Vậy n = 1; m = 1
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
m=1;n=4
m=2;n=3
m=3;n=2
m=4;n=1