K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2024

\(x^2\) + 6\(x\) + 9 = 25

\(x^2\) + 6\(x\) + 9 - 25 = 0

\(x^2\) + 6\(x\) + (9 - 25) = 0

\(x^2\) + 6\(x\) - 16 = 0

\(x^2\) - 2\(x\) + 8\(x\) - 16 = 0

(\(x^2\) - 2\(x\)) + (8\(x\) - 16) = 0

 \(x\)(\(x\) - 2) + 8(\(x-2\)) = 0

   (\(x\) - 2)(\(x\) + 8) = 0

  \(\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\)

   \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy \(x\) \(\in\) {2; - 8} 

28 tháng 6 2024

cứu mình với

 

10 tháng 9 2021

\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)

\(\Leftrightarrow-11x=-22\)

hay x=2

b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)

\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)

\(\Leftrightarrow x=-5\)

3 tháng 7 2023

đề bài của bài này là tính thuii ạ

3 tháng 7 2023

a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)

b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)

c) \(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)

d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)

k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)

f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)

\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

28 tháng 8 2018

10 tháng 3 2021

k cho tui nha

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

25 tháng 10 2021

\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)

16 tháng 9 2021

a.x^3-1^3

b.x^3-5^3

c)(2x)^3+3^3

d)x^3+1/2^3

Câu 1: 

\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3\)

Câu 2: 

a: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

=>x-3=0

hay x=3

b: \(x^2-\dfrac{2}{5}x+\dfrac{1}{25}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{1}{5}+\dfrac{1}{25}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{5}\right)^2=0\)

=>x-1/5=0

hay x=1/5

31 tháng 7 2021

1. x2 - 6x + 9=(x-3)2

2. 25 +  10x + x2=(x+5)2

3. \(\dfrac{1}{4}a^2+2ab^2+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)

4.\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)

5.x+ 8y3=(x+8y)(x2-8xy+64y2)

6.8y3 -125=(2y-5)(4y2+10y+25)

7.a6-b3=(a2-b)(a4+a2b+b2)

8 x2 - 10x + 25=(x-2)2

1) \(x^2-6x+9=\left(x-3\right)^2\)

2) \(25+10x+x^2=\left(5+x\right)^2\)

3) \(\dfrac{1}{4}a^2+2ab+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)

4) \(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)

5) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

6) \(8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)

7) \(a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)

8) \(x^2-10x+25=\left(x-5\right)^2\)

9) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)