Tìm a,b sao cho:f(x)=2x^4+ax^3+3x^2+4x+b chia hết cho gx= x^2-4x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)
Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì 1 và -2 là cũng hai nghiệm của đa thức
\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)
Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)
\(\Leftrightarrow a-b=1\)(1)
Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)
\(\Leftrightarrow52+8a+b=0\)
\(\Leftrightarrow8a+b=-52\)(2)
Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)
\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)
Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)
Vì f(x) chia hết cho (x-1)(x+2) nên f(x) = (x-1)(x+2).Q(x)
hay \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b=\left(x-1\right)\left(x+2\right).Q\left(x\right)\)
Suy ra : \(f\left(1\right)=2+a+3+4+b=0\Rightarrow a+b=-9\left(1\right)\)
\(f\left(-2\right)=32-8a+12-8+b=0\Rightarrow-8a+b=-36\left(2\right)\)
Từ (1) và (2) có hệ \(\begin{cases}a+b=-9\\-8a+b=-36\end{cases}\) \(\Leftrightarrow\begin{cases}a=3\\b=-12\end{cases}\)
c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)
=>a-2=0
=>a=2
d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)
\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)
Để dư bằng -3 thì -a-1=-3
=>a+1=3
=>a=2
Câu 1:
a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)
\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)
\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)
b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)
1) a) (x2 + y2 - 36)2 - 4x2y2
= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)
= [(x - y)2 - 36][(x + y)2 - 36]
= (x - y - 6)(x - y + 6)(x + y + 6)(x + y - 6)
b) (x2 + x)2 - 5(x2 + x) + 6
= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6
= (x2 + x)(x2 + x - 2) - 3(x2 + x - 2)
= (x2 + x - 3)(x2 + 2x - x - 2)
= (x2 + x - 3)(x - 1)(x + 2)
2) Đặt tính là đc
Áp dụng định lý Bezout: f(x) chia hết cho ax + b \(\Leftrightarrow f\left(\frac{-b}{a}\right)=0\)
Đặt \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)
Để đa thức \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)chia hết cho nhị thức 2x + 3 thì :
\(g\left(\frac{-3}{2}\right)=4.\left(\frac{-3}{2}\right)^4+2.\left(\frac{-3}{2}\right)^3+3.\left(\frac{-3}{2}\right)^2-4.\frac{-3}{2}+5+m=0\)
\(\Leftrightarrow\frac{81}{4}-\frac{27}{4}+\frac{27}{4}+6+5+m=0\)
\(\Leftrightarrow\frac{81}{4}-11+m=0\)
\(\Leftrightarrow\frac{37}{4}+m=0\)
\(\Leftrightarrow m=\frac{-37}{4}\)
Vậy \(m=\frac{-37}{4}\)thì \(4x^4+2x^3+3x^2-4x+5+m\)chia hết cho 2x + 3
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
\(2x^4+ax^3+3x^2+4x+b⋮x^2-4x+4\)
=>\(2x^4-8x^3+8x^2+\left(a+8\right)x^3-\left(4a+32\right)x^2+\left(4a+32\right)x+\left(4a+27\right)x^2-4\cdot\left(4a+27\right)x+4\cdot\left(4a+27\right)+\left(12a+80\right)x+b-16a-108⋮x^2-4x+4\)
=>\(\left\{{}\begin{matrix}12a+80=0\\b-16a-108=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{20}{3}\\b=16a+108=\dfrac{4}{3}\end{matrix}\right.\)