Cho \(a=11^2+12^2+21^2+22^2+31^2+32^2\)
\(b=22^2+24^2+42^2+44^2+62^2+64^2\)
Chứng minh \(\frac{a}{b}\)không là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
a,\(\left(x-15\right):50+22=24\)
\(< =>\frac{\left(x-15\right)}{50}=2< =>x-15=100\)
\(< =>x=100+15=115\)
b,\(42-\left(2x+32\right)+12:2=6\)
\(< =>42-2x-32=0\)
\(< =>10-2x=0< =>x=\frac{10}{2}=5\)
Làm nốt :
c) \(134-2\left\{156-6\cdot\left[54-2\cdot\left(9+6\right)\right]\right\}\cdot x=86\)
=> 134 - 2{156 - 6 . [54 - 2 . 15]} . x = 86
=> 134 - 2{156 - 6 . [54 - 30]} . x = 86
=> 134 - 2{156 - 6. 24} . x = 86
=> 134 - 2{156 - 144} . x = 86
=> 134 - 2.12 . x = 86
=> 134 - 24 . x = 86
=> 24.x = 48
=> x = 2
Bài 2 : a) 120 : [21 - (4x - 4)] = 23.3
=> 120 : [21 - (4x - 4)] = 8.3
=> 120 : [21 - (4x - 4)] = 24
=> 21 - (4x - 4) = 5
=> 4x - 4 = 16
=> 4x = 20
=> x = 5
b) 3.[205 - (x - 9)] - 486 = 0
=> 3.[205 - (x - 9)] = 486
=> 205 - (x - 9) = 162
=> x - 9 = 205 - 162 = 43
=> x = 43 + 9 = 52
c) 204 - 2{200 - 5.[64 - 2.(11 + 6)]} . x = 4
=> 204 - 2{200 - 5.[64 - 2.17]} . x = 4
=> 204 - 2{200 - 5 .[64 - 34]}.x = 4
=> 204 - 2{200 - 5.30} . x = 4
=> 204 - 2{200 - 150}.x = 4
=> 204 - 2.50 . x = 4
=> 2.50.x = 200
=> 100.x = 200
=> x = 2
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
a)(x-5):5+22=24
(x-5):5=2
(x-5)=10
x=15
b)42-(2x+32)+12:2=6
42-(2x+32)+6=6
42-(2x+32)=0
(2x+32)=42
2x=10
x=5
Câu 1:
\(a,=43\cdot\left(27+93\right)+3111+3363=43\cdot120+6474=11634\\ b,=11^2+2^{15}\cdot2^3:2^{17}=121+2=123\\ c,=11^2+7^2-9=121+49-9=151\)
Câu 2:
\(a,\Rightarrow x-\dfrac{3}{2}=5^2=25\\ \Rightarrow x=25+\dfrac{3}{2}=\dfrac{53}{2}\\ b,\Rightarrow7x=30-2=28\\ \Rightarrow x=4\)
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
Một cách giải khác:
Ta thấy \(b=22^2+24^2+42^2+44^2+62^2+64^2\)
\(=\left(2.11\right)^2+\left(2.12\right)^2+\left(2.21\right)^2+\left(2.22\right)^2+\left(2.31\right)^2+\left(2.32\right)^2\)
\(=4.11^2+4.12^2+4.21^2+4.22^2+4.31^2+4.32^1\)
\(=4\left(11^2+12^2+...+31^2+32^1\right)=4a\)
Vậy \(\frac{a}{b}=\frac{a}{4a}=\frac{1}{4}\)
Vậy \(\frac{a}{b}\) không là số tự nhiên.
a có 6 số hạng, b cũng có 6 số hạng, mỗi số hạng của a nhỏ hơn các số hạng của b. Suy ra:
\(0< \frac{a}{b}< 1\).
Vậy \(\frac{a}{b}\) không là số tự nhiên.