Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=11^2+12^2+13^2+14^2+...+21^2\)
\(=\left(11.2\right)^2+\left(12.2\right)^2+\left(13.2\right)^2+\left(14.2\right)^2+...+\left(21.2\right)^2\)
\(=22^2+24^2+26^2+28^2+...+42^2\)
\(=11704\)
Vậy S=11704
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Giả sử rằng trong 44 số đã cho, không có hai số nào bằng nhau . Vai trò các số này bình đẳng nên ta giả sử \(a_1< a_2< ...< a_{44}\). Vì a1 , a2 ,..., a44 là các số nguyên dương nên ta có thể gọi \(a_1\ge2\), \(a_2\ge3\).... , \(a_{44}\ge45\)(Dễ thấy \(a_1=1\)thì không tồn tại các giá trị \(a_j\) \(\left(j=2,3,...,44\right)\)thỏa mãn đề bài)
Khi đó : \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{44}^2}\le\frac{1}{2^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)
Như vậy đẳng thức không xảy ra (vô lí) => điều giả sử sai.
Vậy trong 44 số đã cho tồn tại 2 số bằng nhau. (đpcm)
Tham khảo cách làm và đề sau:
Cho 2015 số nguyên dương a1;a2;...;a2016 thỏa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+....+\frac{1}{a_{2016}}=300\)
CMR:tồn tại ít nhất 2 số đã cho bằng nhau.
Giải
Giả sử trong 2016 sô đã cho ko có 2 số nào bằng nhau,ko mất tính tổng quát giả sử a1<a2<....<a2016
Vì a1,a2,....,a2016 đều là số nguyên dương nên ta suy ra \(a_1\ge1;a_2\ge2;...;a_{2016}\ge2016\)
Suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+....+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 30\)
Mâu thuẫn vs gt ->Giả sử sai
=>Trong 2016 số đã cho có ít nhất 2 số bằng nhau
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
Một cách giải khác:
Ta thấy \(b=22^2+24^2+42^2+44^2+62^2+64^2\)
\(=\left(2.11\right)^2+\left(2.12\right)^2+\left(2.21\right)^2+\left(2.22\right)^2+\left(2.31\right)^2+\left(2.32\right)^2\)
\(=4.11^2+4.12^2+4.21^2+4.22^2+4.31^2+4.32^1\)
\(=4\left(11^2+12^2+...+31^2+32^1\right)=4a\)
Vậy \(\frac{a}{b}=\frac{a}{4a}=\frac{1}{4}\)
Vậy \(\frac{a}{b}\) không là số tự nhiên.
a có 6 số hạng, b cũng có 6 số hạng, mỗi số hạng của a nhỏ hơn các số hạng của b. Suy ra:
\(0< \frac{a}{b}< 1\).
Vậy \(\frac{a}{b}\) không là số tự nhiên.