Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử rằng trong 44 số đã cho, không có hai số nào bằng nhau . Vai trò các số này bình đẳng nên ta giả sử \(a_1< a_2< ...< a_{44}\). Vì a1 , a2 ,..., a44 là các số nguyên dương nên ta có thể gọi \(a_1\ge2\), \(a_2\ge3\).... , \(a_{44}\ge45\)(Dễ thấy \(a_1=1\)thì không tồn tại các giá trị \(a_j\) \(\left(j=2,3,...,44\right)\)thỏa mãn đề bài)
Khi đó : \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{44}^2}\le\frac{1}{2^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)
Như vậy đẳng thức không xảy ra (vô lí) => điều giả sử sai.
Vậy trong 44 số đã cho tồn tại 2 số bằng nhau. (đpcm)
Tham khảo cách làm và đề sau:
Cho 2015 số nguyên dương a1;a2;...;a2016 thỏa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+....+\frac{1}{a_{2016}}=300\)
CMR:tồn tại ít nhất 2 số đã cho bằng nhau.
Giải
Giả sử trong 2016 sô đã cho ko có 2 số nào bằng nhau,ko mất tính tổng quát giả sử a1<a2<....<a2016
Vì a1,a2,....,a2016 đều là số nguyên dương nên ta suy ra \(a_1\ge1;a_2\ge2;...;a_{2016}\ge2016\)
Suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+....+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 30\)
Mâu thuẫn vs gt ->Giả sử sai
=>Trong 2016 số đã cho có ít nhất 2 số bằng nhau
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)
.......
\(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)
\(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)
=> A không phải là số tự nhiên ( đpcm )
Một cách giải khác:
Ta thấy \(b=22^2+24^2+42^2+44^2+62^2+64^2\)
\(=\left(2.11\right)^2+\left(2.12\right)^2+\left(2.21\right)^2+\left(2.22\right)^2+\left(2.31\right)^2+\left(2.32\right)^2\)
\(=4.11^2+4.12^2+4.21^2+4.22^2+4.31^2+4.32^1\)
\(=4\left(11^2+12^2+...+31^2+32^1\right)=4a\)
Vậy \(\frac{a}{b}=\frac{a}{4a}=\frac{1}{4}\)
Vậy \(\frac{a}{b}\) không là số tự nhiên.
a có 6 số hạng, b cũng có 6 số hạng, mỗi số hạng của a nhỏ hơn các số hạng của b. Suy ra:
\(0< \frac{a}{b}< 1\).
Vậy \(\frac{a}{b}\) không là số tự nhiên.