K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

PT $\Leftrightarrow x^2-x(2m+1)+m(2m+1)=0$

$\Delta=(2m+1)^2-4m(2m+1)=(2m+1)(1-2m)$

Nếu $\frac{-1}{2}< m< \frac{1}{2}$ thì $\Delta>0$

PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_1=\frac{2m+1+\sqrt{(2m+1)(1-2m)}}{2}\\ x_2=\frac{2m+1-\sqrt{(2m+1)(1-2m)}}{2}\end{matrix}\right.\)

Nếu $m=\frac{-1}{2}\Rightarrow \Delta=0$. PT có nghiệm kép $x_1=x_2=\frac{2m+1}{2}=0$

Nếu $m=\frac{1}{2}\Rightarrow \Delta=0$. PT có nghiệm kép $x_1=x_2=\frac{2m+1}{2}=1$

Nếu $m< \frac{-1}{2}$ hoặc $m> \frac{1}{2}$ thì $\Delta< 0$: PT vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

PT $\Leftrightarrow x^2-x(2m+1)+m(2m+1)=0$

$\Delta=(2m+1)^2-4m(2m+1)=(2m+1)(1-2m)$

Nếu $\frac{-1}{2}< m< \frac{1}{2}$ thì $\Delta>0$

PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_1=\frac{2m+1+\sqrt{(2m+1)(1-2m)}}{2}\\ x_2=\frac{2m+1-\sqrt{(2m+1)(1-2m)}}{2}\end{matrix}\right.\)

Nếu $m=\frac{-1}{2}\Rightarrow \Delta=0$. PT có nghiệm kép $x_1=x_2=\frac{2m+1}{2}=0$

Nếu $m=\frac{1}{2}\Rightarrow \Delta=0$. PT có nghiệm kép $x_1=x_2=\frac{2m+1}{2}=1$

Nếu $m< \frac{-1}{2}$ hoặc $m> \frac{1}{2}$ thì $\Delta< 0$: PT vô nghiệm

3 tháng 12 2023

a. Để giải phương trình a.yo = -(2m-1)xo - m + 1, chúng ta cần biết giá trị của xo và yo. Nếu bạn cung cấp thêm thông tin về xo và yo, tôi sẽ giúp bạn giải phương trình này.

b. Để giải phương trình m^2 - 6m + 3 = 0, chúng ta có thể sử dụng công thức nghiệm của phương trình bậc hai. Áp dụng công thức:

m = (-b ± √(b^2 - 4ac)) / (2a)

Trong đó, a = 1, b = -6 và c = 3. Thay các giá trị vào công thức, ta có:

m = (-(-6) ± √((-6)^2 - 413)) / (2*1)

m = (6 ± √(36 - 12)) / 2

m = (6 ± √24) / 2

m = (6 ± 2√6) / 2

m = 3 ± √6

Vậy phương trình m^2 - 6m + 3 = 0 có hai nghiệm là m = 3 + √6 và m = 3 - √6.

c. Để giải phương trình m^2 + 2m - 1 = 0, chúng ta cũng có thể sử dụng công thức nghiệm của phương trình bậc hai. Áp dụng công thức:

m = (-b ± √(b^2 - 4ac)) / (2a)

Trong đó, a = 1, b = 2 và c = -1. Thay các giá trị vào công thức, ta có:

m = (-(2) ± √((2)^2 - 41(-1))) / (2*1)

m = (-2 ± √(4 + 4)) / 2

m = (-2 ± √8) / 2

m = (-2 ± 2√2) / 2

m = -1 ± √2

Vậy phương trình m^2 + 2m - 1 = 0 có hai nghiệm là m = -1 + √2 và m = -1 - √2.

 

30 tháng 7 2021

câu a 

Gọi xlà nghiệm chung của PT(1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\)  Lấy (1)-(2) ,ta được 

PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0

     \(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)

      \(\Leftrightarrow m=\dfrac{12}{11}\)

 

 

Sửa đề: \(x^2-2mx+2m-1=0\)

\(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>\(\left(2m-2\right)^2>0\)

=>\(2m-2\ne0\)

=>\(2m\ne2\)

=>\(m\ne1\)

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1\cdot x_2=\dfrac{c}{a}=2m-1\end{matrix}\right.\)

Để hai nghiệm phân biệt cùng dương thì \(\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{2}\)

17 tháng 1

trả lời giúp mik đi ạ 

2 tháng 5 2021

1) Với m = 1 thì ta có:

\(x^2-2\left(1-1\right)x+2\cdot1-3=0\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

2) Ta có: \(\Delta^'=\left[-\left(m-1\right)\right]^2-\left(2m-3\right)\cdot1=m^2-2m+1-2m+3\)

\(=m^2-4m+4=\left(m-2\right)^2\ge0\left(\forall m\right)\)

=> PT luôn có nghiệm với mọi m

Theo hệ thức viet ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2-1=2m-3\\x_1x_2=2m-3\end{cases}}\)

\(\Rightarrow x_1+x_2-1=x_1x_2\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=0\)

1 tháng 9 2019