Cho đa thức A(x)=2x^2-3x+1
Tính A(-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=2x^3+2-3x^2+1=2x^3-3x^2+3\)
Có bậc là 3
\(B\left(x\right)=2x^2+3x^3-x-6=3x^3+2x^2-x-6\)
Có bậc 3
b) Thay \(x=2\) vào A(x) ta được:
\(2\cdot2^3-3\cdot2^2+3=2\cdot8-3\cdot4+3=16-12+3=7\)
Vậy giá trị của A(x) tại x=2 là 7
c) \(A\left(x\right)+B\left(x\right)\)
\(=2x^3-3x^2+3+3x^3+2x^2-x-6\)
\(=5x^3-x^2-x-3\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3-3x^2+3\right)-\left(2x^2+3x^3-x-6\right)\)
\(=2x^3-3x^2+3-2x^2-3x^3+x+6\)
\(=-x^3-5x^2+x+9\)
a: A(x)=2x^3-3x^2+3
Bậc là 3
B(x)=3x^3+2x^2-x-6
Bậc là 3
b: A(2)=2*2^3-3*2^2+3=7
c; A(x)+B(x)
=2x^3-3x^2+3+3x^3+2x^2-x-6
=5x^3-x^2-x-3
A(x)-B(x)
=2x^3-3x^2+3-3x^3-2x^2+x+6
=-x^3-5x^2+x+9
a: A(x)+B(x)
=5x^3-2x+3x^2+2x-1
=5x^3+3x^2-1
b: A(x)-C(x)
=5x^3-2x-2x^3+3x^2-3x-1
=3x^3+3x^2-5x-1
c: M(x)=B(x)+C(x)
=3x^2+2x-1+2x^3-3x^2+3x+1
=2x^3+5x
d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0
=>x=1/3 là nghiệm của B(x)
1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)
\(=2x^3-x^2-2x+1\)
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
A = x2 - 3x + x4 - 2x + x2 + 2
A = x4 + ( x2 + x2) - (3x + 2x) + 2
A = x4 + 2x2 - 5x +2
Bậc của đa thức là bậc 4
A(1) = 14 + 2.12 -5.1 + 2
A(1) = 0
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
a) _P(-1)= -3.(-1)^2 + (-1) + 7/4
= -3+(-1)+1,75
=-4+1,75
=-2,25
_P(-1/2)=-3.(-1/2)^2+(-1/2)+7/4
=-3.1/4+(-1/2)+7/4
=-3/4+(-2/4)+7/4
=-5/4+7/4
=2/4=1/2
b) P(x)=-3x^2+x+7/4
-
Q(x)=-3x^2+2x-2
P(x)-Q(x)= -x+3,75
Xet -x+3,75=0
-x =0-3,75
-x =-3,75
=> x =3,75
Vay nghiem cua da thuc P(x)-Q(x) la:3,75
A(\(x\)) = 2\(x^2\) - 3\(x\) + 1
A(-2) = 2.(-2)2 - 3.(-2) + 1
A(-2) = 2.4 + 6 + 1
A(-2) = 8 + 6 + 1
A(-2) = 15
A(-2)=2(-2)^2-3(-2)+1
A(-2)=15