K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=30^0\)

Xét ΔADB có \(\widehat{ADB}+\widehat{BAD}+\widehat{ABD}=180^0\)

=>\(\widehat{ADB}+30^0+80^0=180^0\)

=>\(\widehat{ADB}=70^0\)

b: Xét ΔABD có \(\widehat{BAD}< \widehat{ADB}< \widehat{ABD}\)
mà BD,AB,AD lần lượt là các cạnh đối diện của các góc BAD,ADB,ABD

nên BD<AB<AD

c: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ACB}+60^0+80^0=180^0\)

=>\(\widehat{ACB}=40^0\)

ta có: \(\widehat{ADB}+\widehat{ADC}=180^0\)

=>\(\widehat{ADC}+70^0=180^0\)

=>\(\widehat{ADC}=110^0\)

Xét ΔADC có \(\widehat{DAC}< \widehat{DCA}< \widehat{ADC}\)

mà DC,DA,AC lần lượt là cạnh đối diện của các góc DAC,DCA,ADC

nên DC<DA<AC

\(\widehat{C'}=35^0\)

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: góc C=180-50-60=70 độ

Xét ΔABC có góc A<góc B<góc C

nên BC<AC<AB

16 tháng 10 2021

Vì góc ngoài đỉnh C bằng 120 độ nên \(\widehat{A}+\widehat{B}=120^0\)

Mà \(\widehat{A}-\widehat{B}=60^0\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(120^0+60^0\right):2=90^0\\\widehat{B}=120^0-90^0=30^0\end{matrix}\right.\)

\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)

16 tháng 10 2021

Cảm ơn bn nha ! :33

 

28 tháng 8 2023

\(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(=>60^0+\widehat{B}+44^0=180^0\)

\(=>\widehat{B}=76^0\)

Ta có: \(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\widehat{B}\) ( Vì BD là tia pg của \(\widehat{B}\) )

\(=>\widehat{ABD}=\dfrac{1}{2}.76^0=38^0\)

\(\Delta ABD\) có \(\widehat{CDB}\) là góc ngoài tại đỉnh \(D\)

\(=>\widehat{CDB}=\widehat{A}+\widehat{ABD}\)

\(=>\widehat{CDB}=60^0+38^0=98^0\)

Vậy: \(\widehat{ABC}=76^0;\widehat{ABD}=38^0;\widehat{CDB}=98^0\)

Học từ từ thôi:).

14 tháng 1 2017

làm nhanh nhé mk có việc gấp ạ thanks các bn

4 tháng 12 2023

a, \(\Delta\)ABC = \(\Delta\) DMN 

      ⇒ \(\widehat{B}\) = \(\widehat{M}\) = 600

b; \(\Delta\)ABC =  \(\Delta\) DMN

⇒ BC = MN = 6 cm

   AC = DN = 4 cm 

 

1 tháng 12 2015

TA co tia phan giac goc B  CAT AC O D 

B =DBC *2 =30*2=60

XET tam giac ABC co 

A +B+C=180 (Tong 3 goc trong 1 tam giac )

A+60+60=180

A            =180-60-60

A             =60

VAY goc A la 60 do

 

 

1 tháng 4 2016

H�nh tam gi�c TenDaGiac1: Polygon B, A, C H�nh tam gi�c TenDaGiac1_1: Polygon B', A', C' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a B, A, C G�c ?: G�c gi?a B, A, C ?o?n th?ng c: ?o?n th?ng [B, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [A, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng c_1: ?o?n th?ng [B', A'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng a_1: ?o?n th?ng [A', C'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng b_1: ?o?n th?ng [C', B'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng d: ?o?n th?ng [B', B] ?o?n th?ng e: ?o?n th?ng [C', C] ?o?n th?ng f: ?o?n th?ng [A', A] ?o?n th?ng g: ?o?n th?ng [B', G] ?o?n th?ng h: ?o?n th?ng [B, G] ?o?n th?ng i: ?o?n th?ng [G, M] B = (-2.08, 1.4) B = (-2.08, 1.4) B = (-2.08, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) C = (0.1, -0.66) C = (0.1, -0.66) C = (0.1, -0.66) B' = (0.38, 4.84) B' = (0.38, 4.84) B' = (0.38, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) C' = (2.56, 2.78) C' = (2.56, 2.78) C' = (2.56, 2.78) ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A

Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)

Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)

Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)

Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)

Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)

Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)

Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)

1 tháng 4 2016

Gọi G là trong tâm tam giác ABC ta có BG(ABC)Từ đó B′BCG^=600 là góc mà BB′ tạo với mặt phẳng (ABC). Trong tam giác vuông BBG ta có ngay: BG=a2,BG=a32BG=a2,B′G=a32



 Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
  AC=x,BC=x3AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BGACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
  BN2=NC2+BC29a216=x24+3x2x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VAABC=13SABC.BG=13.12.AB.BC.a32=a312x.x3=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA.ABC=9a3208VA′.ABC=9a3208    (đvtt)

10 tháng 8 2021

2, Theo bài ra ta có : ^A = 600 ; ^B = 2.^C (*)

^A + ^B + ^C = 1800 ( tổng 3 góc trong tam giác ) (**)

Lấy (*) thay vào (**) ta được : ^A + 2.^C + ^C = 1800

<=> 600 + 3.^C = 1800 <=> 3.^C = 1200

<=> ^C  = 400 ; => ^B = 2.400 = 800