K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4

Ta có: \(6xy+4x+15y+18=0\\ \Leftrightarrow\left(6xy+15y\right)+\left(4x+18\right)=0\\ \Leftrightarrow3y\left(2x+5\right)+2\left(2x+6\right)=0\Leftrightarrow3y\left(2x+5\right)+2\left(2x+5\right)+2=0\\ \Leftrightarrow\left(2x+5\right)\left(3y+2\right)=-2\)

Vì \(x,y\inℤ\) nên \(2x+5\inℤ;3y+2\inℤ\) 

\(\Rightarrow\left(2x+5;3y+2\right)\inƯ\left(-2\right)\\\Rightarrow\left(2x+5;3y+2\right)\in \left\{\pm1;\pm2\right\}\)

Ta có bảng sau:

\(2x+5\) \(1\) \(2\) \(-1\) \(-2\)
\(3y+2\) \(2\) \(1\) \(-2\) \(-1\)
\(x\) \(\dfrac{8}{11}\) \(\dfrac{1}{11}\) \(-\dfrac{8}{11}\) \(-\dfrac{1}{11}\)
\(y\) \(-\dfrac{1}{11}\) \(\dfrac{4}{11}\) \(\dfrac{1}{11}\) \(-\dfrac{4}{11}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\dfrac{8}{11};-\dfrac{1}{11}\right);\left(\dfrac{1}{11};\dfrac{4}{11}\right);\left(-\dfrac{8}{11};\dfrac{1}{11}\right);\left(-\dfrac{1}{11};-\dfrac{4}{11}\right)\right\}\)(Loại)

Vậy không có nghiệm \(x,y\inℤ\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

30 tháng 11 2023

Cíu ét o ét

AH
Akai Haruma
Giáo viên
27 tháng 8

Lời giải:

Áp dụng TCDTSBN:

$\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0$

$\Rightarrow 12x=15y; 20z=12x$

$\Rightarrow 12x=15y=20z$

$\Rightarrow \frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}$

$\Rightarrow \frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Tiếp tục áp dụng TCDTSBN:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{96}{12}=8$

$\Rightarrow x=8.5=40; y=8.4=32; z=3.8=24$

 

9 tháng 3 2021

4xy-6y+4x nhé

9 tháng 3 2021

4xy-6y+4x

15 tháng 1 2019

\(xy+4x+y=3\)

\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)

Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên

Ta có bảng

x + 1               -7                   -1                     1                   7                     
y + 4-1-771
x-8-206
y-5-113-3

Vậy ,.............

16 tháng 1 2019

\(xy+4x+y=3\)

\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)

\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)

\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có các trường hợp sau 

\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)            \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)

\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\)      \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)

Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)

NV
20 tháng 8 2021

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản