Cho A = 1 /7 + 1/8 + 1/9 + 1/10 + ... + 1/48 + 1/49
Chứng minh rằng : A > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}\left(đpcm\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\)\(\frac{1}{10}\)
\(A=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{9}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\left(đpcm\right)\)
~~~Hok tốt~~~
Ta có : $16A=\dfrac{16}{6.10}+\dfrac{16}{7.9}+\dfrac{16}{8.8}+\dfrac{16}{9.7}+\dfrac{16}{10.6}$
$=>16A=\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{6}$
$=>16A=2.(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10})$
$=>A=\dfrac{1}{8}(dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10})$
\(A=\dfrac{1}{6.10}+\dfrac{1}{7.9}+\dfrac{1}{8.8}+\dfrac{1}{9.7}+\dfrac{1}{10.6}\)
\(16A=\dfrac{16}{6.10}+\dfrac{16}{7.9}+\dfrac{16}{8.8}+\dfrac{16}{9.7}+\dfrac{16}{10.6}\)
\(16A=\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{6}\)
\(16A=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=2:16\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=\dfrac{1}{8}\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\left(đpcm\right)\)
a, \(\dfrac{10}{17}\) + \(\dfrac{5}{-13}\) - \(\dfrac{11}{25}\) + \(\dfrac{7}{17}\) - \(\dfrac{8}{13}\)
= ( \(\dfrac{10}{17}\) + \(\dfrac{7}{17}\)) - ( \(\dfrac{5}{13}\) + \(\dfrac{8}{13}\)) - \(\dfrac{11}{25}\)
= \(\dfrac{17}{17}\) - \(\dfrac{13}{13}\) - \(\dfrac{11}{25}\)
= 1 - 1 - \(\dfrac{11}{25}\)
= - \(\dfrac{11}{25}\)
b, 0,3 - \(\dfrac{93}{7}\) - 70% - \(\dfrac{4}{7}\)
= 0,3 - 0,7 - ( \(\dfrac{93}{7}+\dfrac{4}{7}\))
= - 0,4 - \(\dfrac{97}{7}\)
= - \(\dfrac{2}{5}\) - \(\dfrac{97}{7}\)
= - \(\dfrac{499}{35}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))