cho a + b + c = 0 . CM : M = N = P M = a ( a + b ) ( a + c ) N = b ( b + c ) ( a + b ) P = c ( c + b ) ( a + c )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)với a;b;c >0
a)CM: M>1
b)CM: M ko là số nguyên
cm: \(1< M< 2\) sẽ thỏa mãn cả a và b
Ta có:
\(M>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)
vì \(a;b;c>0\Leftrightarrow\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}< 1\)
\(\Rightarrow M< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\)
hay: \(1< M< 2\)
Ta có:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\)\(M>1\left(1\right)\)
M=\(\dfrac{a+b-b}{a+b}+\dfrac{b+c-c}{b+c}+\dfrac{c+a-a}{c+a}\)
= \(3-\left(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}\right)< 2\) \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
(Vì \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
\(\Rightarrow1< M< 2\)
Vậy M không có giá trị nguyên(đpcm)
\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)
\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)
\(=a^20+abc=abc\) (1)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)
\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)
\(=b^20+abc=abc\) (2)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)
\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)
\(c^20+abc=abc\) (3)
từ (1);(2)và(3) ta có : \(M=N=P=abc\)
vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)
Lời giải:
Ta có
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=\left ( \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \right )(a+b+c)-\frac{a(b+c)}{b+c}-\frac{b(c+a)}{c+a}-\frac{c(a+b)}{a+b}\)
\(=a+b+c-(a+b+c)=0\)
Ta có đpcm
a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}M=a.\left(-c\right).\left(-b\right)=abc\\N=b.\left(-a\right).\left(-c\right)=abc\\P=c.\left(-b\right).\left(-a\right)=abc\end{cases}\Rightarrow M=N=P}\)
Ta có : a+b+c=0
Suy ra :a+b=-c ; a+c=-b và b+c=-a
Nên : M=a(a+b)(a+c)
=a.(-c).(-b)=abc (1)
N=b(b+c)(b+a)
=b.(-a).(-c)=abc (2)
Và : P=c(c+a)(c+b)
=c.(-b).(-a)=abc (3)
Từ (1)(2) và (3) suy ra : Đpcm
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)
\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)
\(\Rightarrow\)\(M=N=P\)