K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: Cho tam giác ABC, góc B > góc C, AD là tia phân giáca) Chứng minh góc ADC - ADB = góc B - Cb) Phân giác góc ngoài tại A của tam giác ABC cắt BC ở E. Chứng minh góc AEB = 1/2 (B -C)Bài 3: Cho tam giác ABC, gọi D, E lần lượt là trung điểm của AC, AB. Trên tia đối của tia DB lấy M sao cho DM = DB; trên tia đối của tia EC lấy N sao cho EN = EC. Chứng minh A là trung điểm của MN?Bài 4: Cho tam giác ABC có góc A = 50°. Vẽ đoạn thẳng AI vuông...
Đọc tiếp

Bài 2: Cho tam giác ABC, góc B > góc C, AD là tia phân giác

a) Chứng minh góc ADC - ADB = góc B - C

b) Phân giác góc ngoài tại A của tam giác ABC cắt BC ở E. Chứng minh góc AEB = 1/2 (B -C)

Bài 3: Cho tam giác ABC, gọi D, E lần lượt là trung điểm của AC, AB. Trên tia đối của tia DB lấy M sao cho DM = DB; trên tia đối của tia EC lấy N sao cho EN = EC. Chứng minh A là trung điểm của MN?

Bài 4: Cho tam giác ABC có góc A = 50°. Vẽ đoạn thẳng AI vuông góc và bằng AB (I và C khác phía với AB). Vẽ đoạn thẳng AK vuong góc và bằng AC (K và B khác phía với AC). Chứng minh:

a) IC = BK

b) IC vuông góc BK

Bài 5: Cho tam giác ABC có góc A = 100°, M là trung điểm của BC, trên tia đối của MA lấy K sao cho MK = MA

a) Tính số đo góc ABK?

b) Ở phía ngoài tam giác ABC, vẽ AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh hai tam giác ABK và DAE bằng nhau

c) Chứng minh MA vuông góc DE

Bài 6: Cho tam giác ABC có tia phân giác của góc ABC cắt cạnh AC ở D, tia phân giác của góc ACB cắt cạnh AB ở E. Biết BE + CD = BC. Tính số đo góc BAC?

Bài 7: Cho tam giác ABC có góc B = 2C. Tia phân giác của góc B cắt AC ở D. Trên tia đối của BD lấy E sao cho BE = AC. Trên tia đối của CB lấy K sao cho CK = AB. Chứng minh AE = AK.

1

3:

Xét tứ giác ANBC có

E là trung điểm chung của AB và NC

=>ANBC là hbh

=>AN//BC và AN=BC

Xét tứ giác ABCM có

D là trung điểm chung của AC và BM

=>ABCM là hbh

=>AM//BC và AM=BC

=>AN//AM và AN=AM

=>A là trung điểm của MN

28 tháng 7 2016

cm dc câu a thui ^^

gọi góc ADB là góc D1 góc ADC là góc D2 

xét ta.giác ABD có :góc B+D1+1/2 góc BAC=180 độ(1)

xét ta.giác ADC có :góc C+D2+1/2 góc BAC=180 độ(2)

trừ lần lượt 2 vế của đẳng thức 1 và 2 ta có : góc B+D1+1/2 góc BAC -(góc C+D2+1/2 góc BAC)=180-180

                                                                  <=>góc B+D1- góc C - D2=0

                                                                   <=>góc B - góc C= D2 - D1

2 tháng 10 2016

iyuoyuoyoluyo ijo78ok,

21 tháng 10 2023

a: Xét ΔADC có góc ADB là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{C}\)

Xét ΔADB có góc ADC là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DAB}+\widehat{B}=\widehat{DAC}+\widehat{B}\)

\(\widehat{ADC}-\widehat{ADB}\)

\(=\widehat{DAC}+\widehat{B}-\widehat{DAC}-\widehat{C}\)

\(=\widehat{ABC}-\widehat{ACB}\)

b: Vì AD và AE là hai tia phân giác của hai góc kề bù

nên AD vuông góc AE

=>ΔDAE vuông tại A

ΔDAE vuông tại A

=>\(\widehat{AEB}+\widehat{ADB}=90^0\)

=>\(\widehat{AEB}+\left(\dfrac{1}{2}\widehat{BAC}+\widehat{C}\right)=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}\)

=>\(\widehat{AEB}=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}-\dfrac{1}{2}\widehat{BAC}-\widehat{C}\)

=>\(\widehat{AEB}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)

24 tháng 2 2022

a, Ta có AC > AB => ^B > ^C 

b, Ta có : ^ADC = 1800 - ^DAC - ^C 

^ADB = 1800 - ^DAB - ^B 

mà ^DAC = ^DAB ( AD là pg ) 

^C > ^B => ^ADC < ^ADB 

24 tháng 2 2022

TL:

a, Ta có AC > AB => ^B > ^C 

b, Ta có : ^ADC = 1800 - ^DAC - ^C 

^ADB = 1800 - ^DAB - ^B 

mà ^DAC = ^DAB ( AD là pg ) 

^C > ^B => ^ADC < ^ADB 

k mik nha bn

a: \(\widehat{BAD}+\widehat{B}+\widehat{ADB}=\widehat{CAD}+\widehat{C}+\widehat{ADC}\left(=180^0\right)\)

\(\Leftrightarrow\widehat{B}+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)

mà \(\widehat{B}>\widehat{C}\)

nên \(\widehat{ADB}< \widehat{ADC}\)

24 tháng 2 2022

a, Ta có ^ADC = 1800 - ^C - ^DAC 

^ADB = 1800 - ^B - ^BAD 

mà ^DAC = ^BAD ( AD là pg ) 

^B > ^C (gt) 

=> ^ADC > ^ADB