K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9 

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

17 tháng 4 2016

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp

Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6

23 tháng 10 2016

Mỗi số khi chia cho 3 thì xảy ra 1 trong 3 trường hợp sau:

             n=3k;n=3k+1;n=3k+2 (k là số tự nhiên)

+ Nếu n= 3k thì=> n(n+2)(n+13) chia hết cho 3.        (1)

+Nếu n=3k+1 => :n(n+2)(n+13)=(3k+1)(3k+1+2)(3k+1+13)

                                             =(3k+1)(3k+3)(3k+14)

                                             =(3k+1)(k+1)3(3k+14)

Vì 3 chia hết cho 3=>(3k+1)(k+1)3(3k+14) chia hết cho 3.

Hay n(n+2)(n+13) chia hết cho 3.                    (2)

+Nếu n=3k+2 =>n(n+2)(n+13)=(3k+2)(3k+2+2)(3k+2+13)

                                           =(3k+2)(3k+4)(3k+15)

                                           =(3k+2)(3k+4)(k+5)3

Vì 3 chia hết cho 3=>(3k+2)(3k+4)(k+5)3 chia hết cho 3.

Hay n(n+2)(n+13) chia hết cho 3.              (3)

Từ (1),(2) và (3) => với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.

Vậy với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.

23 tháng 10 2016

cảm ơn cậu