K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9 

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

8 tháng 1 2016

dễ zậy mà 5 tháng trời rùi vẫn hổng có ai giải đc

18 tháng 1 2018

Xét n=0 => 62n+1 + 5n+2  = 31chia hết 31

Xét n=1 => 62n+1 + 5n+2  = 341 chia hết 31

Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3  + 5k+3

Ta có 62k+1 + 5k+2  = 36k .6+5k .25 chia hết 31

<=> 62k+3  + 5k+3 = 36k .216+5k .125

Xét hiệu : 62k+3  + 5k+3 − 62k+1  − 5k+2  = 36k .216+5k .125−36k .6−5k .25

= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k  chia hết 36 - 5 = 31

=> 62n+3  + 5k+3  − 62k+1 − 5k+2  chia hết 31

. Mà 62k+1  + 5k+2  chia hết 31 nên 62k+3 + 5k+3  chia hết 31

Phép quy nạp được chứng minh hoàn toàn,ta có đpcm 

:D

18 tháng 1 2018

Ta có: \(6^2\equiv5\left(mod31\right)\)

\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)

\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)

Lại có: 5\(5\equiv5\left(mod31\right)\)

\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)

\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)